A simulative approach to obtain higher temperatures during spark plasma sintering of ZrB2 ceramics by geometry optimization

  • Milad Sakkaki 1
  • Mohsen Naderi 1
  • Mohammad Vajdi 1
  • Farhad Sadegh Moghanlou 1
  • Ali Tarlani Beris 2
  • 1 Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
  • 2 Department of Mechanical Engineering, College of Engineering, Boston University, Boston, USA

Abstract

This study provides a detailed analysis of the Spark Plasma Sintering (SPS) process for Zirconium Diboride (ZrB2) ceramics, utilizing the finite element method in COMSOL Multiphysics. The focus is on understanding the temperature distribution during the SPS of a ZrB2 sample in a graphite die. Heat diffusion equations, augmented with Joule heating considerations, are utilized to simulate temperature variations within the system over time. Critical boundary conditions at the system's extremities are modeled as convection cooling. The Analysis of Variance (ANOVA) reveals that the diameter of the sample is the most significant factor influencing the peak temperature at the center of the ZrB2 sample. It is found that the sample diameter's variance accounts for a predominant impact on temperature, markedly more than other factors such as the die's outer diameter and sample thickness. Notably, the standard deviation of the temperature in the axial direction across all samples is less than 4 °C, a value that is statistically minor in comparison to the sintering temperatures, which are around 2000 °C. These findings are instrumental in providing an in-depth understanding of the SPS process, which is essential for the optimization of sintering parameters for ZrB2 ceramics.

Downloads

Download data is not yet available.
Keywords: Zirconium diboride, Numerical analysis, Taguchi method, Temperature distribution, SPS

References

[1] S.K. Thimmappa, B.R. Golla, V.V. Bhanu Prasad, Oxidation behavior of silicon-based ceramics reinforced diboride UHTC: a review, Silicon. 14 (2022) 12049–12074. https://doi.org/10.1007/s12633-022-01945-8.
[2] A.S. Mukasyan, A.S. Rogachev, D.O. Moskovskikh, Z.S. Yermekova, Reactive spark plasma sintering of exothermic systems: A critical review, Ceram. Int. 48 (2022) 2988–2998. https://doi.org/10.1016/j.ceramint.2021.10.207.
[3] P. Cavaliere, B. Sadeghi, A. Shabani, Spark plasma sintering: process fundamentals, in: Spark Plasma Sinter. Mater., Springer International Publishing, Cham. (2019) 3–20. https://doi.org/10.1007/978-3-030-05327-7_1.
[4] Z.-Y. Hu, Z.-H. Zhang, X.-W. Cheng, F.-C. Wang, Y.-F. Zhang, S.-L. Li, A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications, Mater. Des. 191 (2020) 108662. https://doi.org/10.1016/j.matdes.2020.108662.
[5] E. Ranjbarpour Niari, M. Vajdi, M. Sakkaki, S. Azizi, F. Sadegh Moghanlou, M. Shahedi Asl, Finite element simulation of disk‐shaped HfB2 ceramics during spark plasma sintering process, Int. J. Appl. Ceram. Technol. 19 (2022) 344–357. https://doi.org/10.1111/ijac.13886.
[6] D. Bubesh Kumar, B. Selva babu, K.M. Aravind Jerrin, N. Joseph, A. Jiss, Review of spark pasma sintering process, IOP Conf. Ser. Mater. Sci. Eng. 993 (2020) 012004. https://doi.org/10.1088/1757-899X/993/1/012004.
[7] F. Sadegh Moghanlou, M. Vajdi, M. Sakkaki, S. Azizi, Effect of graphite die geometry on energy consumption during spark plasma sintering of zirconium diboride, Synth. Sinter. 1 (2021) 54–61. https://doi.org/10.53063/synsint.2021.117.
[8] M. Vajdi, F. Sadegh Moghanlou, Z. Ahmadi, A. Motallebzadeh, M. Shahedi Asl, Thermal diffusivity and microstructure of spark plasma sintered TiB2-SiC-Ti composite, Ceram. Int. 45 (2019) 8333–8344. https://doi.org/10.1016/j.ceramint.2019.01.141.
[9] Y. Le Godec, S. Le Floch, Recent developments of high-pressure spark plasma sintering: an overview of current applications, challenges and future directions, Materials (Basel). 16 (2023) 997. https://doi.org/10.3390/ma16030997.
[10] W. Yucheng, F. Zhengyi, Study of temperature field in spark plasma sintering, Mater. Sci. Eng. B. 90 (2002) 34–37. https://doi.org/10.1016/S0921-5107(01)00780-2.
[11] Z. Shen, M. Johnsson, Z. Zhao, M. Nygren, Spark plasma sintering of alumina, J. Am. Ceram. Soc. 85 (2002) 1921–1927. https://doi.org/10.1111/j.1151-2916.2002.tb00381.x.
[12] K. Matsugi, H. Kuramoto, T. Hatayama, O. Yanagisawa, Temperature distribution at steady state under constant current discharge in spark sintering process of Ti and Al2O3 powders, J. Mater. Process. Technol. 134 (2003) 225–232. https://doi.org/10.1016/S0924-0136(02)01039-7.
[13] S. Guo, T. Nishimura, Y. Kagawa, J. Yang, Spark plasma sintering of zirconium diborides, J. Am. Ceram. Soc. 91 (2008) 2848–2855. https://doi.org/10.1111/j.1551-2916.2008.02587.x.
[14] A. Pavia, L. Durand, F. Ajustron, V. Bley, G. Chevallier, et al., Electro-thermal measurements and finite element method simulations of a spark plasma sintering device, J. Mater. Process. Technol. 213 (2013) 1327–1336. https://doi.org/10.1016/j.jmatprotec.2013.02.003.
[15] S. Grasso, Y. Sakka, G. Maizza, Pressure effects on temperature distribution during spark plasma sintering with graphite sample, Mater. Trans. 50 (2009) 2111–2114. https://doi.org/10.2320/matertrans.M2009148.
[16] K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Vanderbiest, Modelling of the temperature distribution during field assisted sintering, Acta Mater. 53 (2005) 4379–4388. https://doi.org/10.1016/j.actamat.2005.05.042.
[17] M. Naderi, M. Vajdi, F. Sadegh Moghanlou, H. Nami, Sensitivity analysis of fluid flow parameters on the performance of fully dense ZrB2-made micro heat exchangers, Synth. Sinter. 3 (2023) 88–106. https://doi.org/10.53063/synsint.2023.32143.
[18] M. Stuer, P. Bowen, Z. Zhao, Spark plasma sintering of ceramics: from modeling to practice, Ceramics. 3 (2020) 476–493. https://doi.org/10.3390/ceramics3040039.
[19] M. Sakkaki, S.M. Arab, In-situ synthesized phases during the spark plasma sintering of g-C3N4 added TiB2 ceramics: A thermodynamic approach, Synth. Sinter. 3 (2023) 73–78. https://doi.org/10.53063/synsint.2023.32151.
[20] P.M. Radingoana, S. Guillemet-Fritsch, P.A. Olubambi, G. Chevallier, C. Estournès, Influence of processing parameters on the densification and the microstructure of pure zinc oxide ceramics prepared by spark plasma sintering, Ceram. Int. 45 (2019) 10035–10043. https://doi.org/10.1016/j.ceramint.2019.02.048.
[21] E. De Bona, L. Balice, L. Cognini, M. Holzhäuser, K. Popa, O. Walter, M. Cologna, D. Prieur, T. Wiss, G. Baldinozzi, Single-step, high pressure, and two-step spark plasma sintering of UO2 nanopowders, J. Eur. Ceram. Soc. 41 (2021) 3655–3663. https://doi.org/10.1016/j.jeurceramsoc.2021.01.020.
[22] M. Shirani, M. Rahimipour, M. Zakeri, S. Safi, T. Ebadzadeh, ZrB2-SiC-WC coating with SiC diffusion bond coat on graphite by spark plasma sintering process, Ceram. Int. 43 (2017) 14517–14520. https://doi.org/10.1016/j.ceramint.2017.07.123.
[23] P. Sengupta, S.S. Sahoo, A. Bhattacharjee, S. Basu, I. Manna, Effect of TiC addition on structure and properties of spark plasma sintered ZrB2–SiC–TiC ultrahigh temperature ceramic composite, J. Alloys Compd. 850 (2021) 156668. https://doi.org/10.1016/j.jallcom.2020.156668.
[24] N.J. Rathod, M.K. Chopra, U.S. Vidhate, N.B. Gurule, U.V. Saindane, Investigation on the turning process parameters for tool life and production time using Taguchi analysis, Mater. Today Proc. 47 (2021) 5830–5835. https://doi.org/10.1016/j.matpr.2021.04.199.
[25] Y. Achenani, M. Saâdaoui, A. Cheddadi, G. Bonnefont, G. Fantozzi, Finite element modeling of spark plasma sintering: Application to the reduction of temperature inhomogeneities, case of alumina, Mater. Des. 116 (2017) 504–514. https://doi.org/10.1016/j.matdes.2016.12.054.
[26] C. Wang, L. Cheng, Z. Zhao, FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation, Comput. Mater. Sci. 49 (2010) 351–362. https://doi.org/10.1016/j.commatsci.2010.05.021.
[27] E. Zapata-Solvas, D.D. Jayaseelan, H.T. Lin, P. Brown, W.E. Lee, Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering, J. Eur. Ceram. Soc. 33 (2013) 1373–1386. https://doi.org/10.1016/j.jeurceramsoc.2012.12.009.
[28] S. Mohammad Bagheri, M. Vajdi, F. Sadegh Moghanlou, M. Sakkaki, M. Mohammadi, et al., Numerical modeling of heat transfer during spark plasma sintering of titanium carbide, Ceram. Int. 46 (2020) 7615–7624. https://doi.org/10.1016/j.ceramint.2019.11.262.
[29] Y. Ai, Y. Yan, G. Dong, S. Han, Investigation of microstructure evolution process in circular shaped oscillating laser welding of Inconel 718 superalloy, Int. J. Heat Mass Transf. 216 (2023) 124522. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124522.
[30] C. Manière, A. Pavia, L. Durand, G. Chevallier, K. Afanga, C. Estournès, Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process, J. Eur. Ceram. Soc. 36 (2016) 741–748. https://doi.org/10.1016/j.jeurceramsoc.2015.10.033.
[31] S. Savani, M. Alipour, A. Sharma, D. Benny Karunakar, Microwave sintering of ZrB2-based ceramics: A review, Synth. Sinter. 3 (2023) 143–152. https://doi.org/10.53063/synsint.2023.33129.
[32] S.K. Kashyap, R. Mitra, Densification behavior involving creep during spark plasma sintering of ZrB2-SiC based ultra-high temperature ceramic composites, Ceram. Int. 46 (2020) 5028–5036. https://doi.org/10.1016/j.ceramint.2019.10.246.
[33] A. Shima, M. Kazemi, Influence of TiN addition on densification behavior and mechanical properties of ZrB2 ceramics, Synth. Sinter. 3 (2023) 46–53. https://doi.org/10.53063/synsint.2023.31133.
[34] T.R. Paul, M.K. Mondal, M. Mallik, Densification behavior of ZrB2–MoSi2–SiCw composite processed by multi stage spark plasma sintering, Ceram. Int. 47 (2021) 31948–31972. https://doi.org/10.1016/j.ceramint.2021.08.081.
[35] M. Patel, V. Singh, J.J. Reddy, V.V. Bhanu Prasad, V. Jayaram, Densification mechanisms during hot pressing of ZrB2–20vol.% SiC composite, Scr. Mater. 69 (2013) 370–373. https://doi.org/10.1016/j.scriptamat.2013.05.021.
[36] M. Shahedi Asl, M. Ghassemi Kakroudi, Fractographical assessment of densification mechanisms in hot pressed ZrB2-SiC composites, Ceram. Int. 40 (2014) 15273–15281. https://doi.org/10.1016/j.ceramint.2014.07.023.

Cited By

Crossref Google Scholar
A simulative approach to obtain higher temperatures during spark plasma sintering of ZrB2 ceramics by geometry optimization
Submitted
2023-09-29
Published
2023-12-17
How to Cite
Sakkaki, M., Naderi, M., Vajdi, M., Sadegh Moghanlou, F., & Tarlani Beris, A. (2023). A simulative approach to obtain higher temperatures during spark plasma sintering of ZrB2 ceramics by geometry optimization. Synthesis and Sintering, 3(4), 248-258. https://doi.org/10.53063/synsint.2023.34178

Most read articles by the same author(s)