Numerical assessment of ceramic micro heat exchangers working with nanofluids by Taguchi optimization approach

  • Mohsen Naderi 1
  • Mohammad Vajdi 1
  • Farhad Sadegh Moghanlou 1
  • Hossein Nami 2
  • 1 Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
  • 2 SDU Life Cycle Engineering, Department of Green Technology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark

Abstract

The rapid advancements in microsystems technology have necessitated the exploration of innovative materials for efficient thermal management in micro heat exchangers. This research delves into the performance evaluation of three advanced ceramics: ZrB2, BeO, and Si3N4 as alternative micro heat exchanger fabrication materials. The study systematically assessed the ceramics' interaction with Al2O3-nanofluids across diverse volume percentages and mass flow rates using the Taguchi optimization method. Beryllium oxide emerged as the superior material, registering warm outlet temperatures as low as 64.86 °C and cold outlet peaks at 31.68 °C. Sensitivity analyses further underscored the critical role of inlet temperature on outlet dynamics, with warm and cold outlets showing significances of ~72% and ~99%, respectively. Additionally, the research pinpointed 0.75 vol% as the optimal Al2O3-nanofluid content, yielding the most favorable performance metrics across the ceramics.

Downloads

Download data is not yet available.
Keywords: Micro heat exchanger, Taguchi method, Optimization, Advanced ceramics, Numerical method

References

[1] Z. He, Y. Yan, Z. Zhang, Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review, Energy. 216 (2021) 119223. https://doi.org/10.1016/j.energy.2020.119223.
[2] A. Baroutaji, A. Arjunan, M. Ramadan, J. Robinson, A. Alaswad, et al., Advancements and prospects of thermal management and waste heat recovery of PEMFC, Int. J. Thermofluids. 9 (2021) 100064. https://doi.org/10.1016/j.ijft.2021.100064.
[3] Y. Huang, P. Mei, Y. Lu, R. Huang, X. Yu, et al., A novel approach for Lithium-ion battery thermal management with streamline shape mini channel cooling plates, Appl. Therm. Eng. 157 (2019) 113623. https://doi.org/10.1016/j.applthermaleng.2019.04.033.
[4] J.J. Klemeš, Q.-W. Wang, P.S. Varbanov, M. Zeng, H. Chin, et al., Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation, Renew. Sustain. Energy Rev. 120 (2020) 109644. https://doi.org/10.1016/j.rser.2019.109644.
[5] S. Kakaç, H. Liu, A. Pramuanjaroenkij, Heat exchangers: selection, rating, and thermal design, CRC Press, Boca Raton. (2020). https://doi.org/10.1201/9780429469862.
[6] C. Abeykoon, Compact heat exchangers – Design and optimization with CFD, Int. J. Heat Mass Transf. 146 (2020) 118766. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118766.
[7] M. Vajdi, M.S. Asl, S. Nekahi, F.S. Moghanlou, S. Jafargholinejad, M. Mohammadi, Numerical assessment of beryllium oxide as an alternative material for micro heat exchangers, Ceram. Int. 46 (2020) 19248–19255. https://doi.org/10.1016/j.ceramint.2020.04.263.
[8] M. Jaberi Zamharir, M. Zakeri, Z. Jahangiri, A. Mohammadzadeh, Microstructural characterization of ZrB2–SiC–Si–MoSi2–WC coatings applied by SPS on graphite substrate, Synth. Sinter. 3 (2023) 124–131. https://doi.org/10.53063/synsint.2023.32152.
[9] Y. Liu, J. Sha, C. Su, J. Dai, Y. Zu, Phase composition, densification behavior and high-temperature strength of carbon-doped ZrB2–ZrSi2 ceramics, Ceram. Int. 49 (2023) 39083–39089. https://doi.org/10.1016/j.ceramint.2023.09.246.
[10] S. Savani, M. Alipour, A. Sharma, D.B. Karunakar, Microwave sintering of ZrB2-based ceramics: A review, Synth. Sinter. 3 (2023) 143–152. https://doi.org/10.53063/synsint.2023.33129.
[11] A. Shima, M. Kazemi, Influence of TiN addition on densification behavior and mechanical properties of ZrB2 ceramics, Synth. Sinter. 3 (2023) 46–53. https://doi.org/10.53063/synsint.2023.31133.
[12] M. Hou, X. Zhou, B. Liu, Beryllium oxide utilized in nuclear reactors: Part II, A systematic review of the neutron irradiation effects, Nucl. Eng. Technol. 55 (2023) 408–420. https://doi.org/10.1016/j.net.2022.10.020.
[13] V. Altunal, V. Guckan, Y. Yu, A. Dicker, Z. Yegingil, A newly developed OSL dosimeter based on beryllium oxide: BeO:Na,Dy,Er, J. Lumin. 222 (2020) 117140. https://doi.org/10.1016/j.jlumin.2020.117140.
[14] C. Xia, W. Li, D. Ma, L. Zhang, Electronic and thermal properties of monolayer beryllium oxide from first principles, Nanotechnology. 31 (2020) 375705. https://doi.org/10.1088/1361-6528/ab97d0.
[15] L.L. Snead, Use of beryllium and beryllium oxide in space reactors, AIP Conf. Proc. 746 (2005) 768–775. https://doi.org/10.1063/1.1867196.
[16] H. Klemm, Silicon nitride for high‐temperature applications, J. Am. Ceram. Soc. 93 (2010) 1501–1522. https://doi.org/10.1111/j.1551-2916.2010.03839.x.
[17] R.B. Ganvir, P.V. Walke, V.M. Kriplani, Heat transfer characteristics in nanofluid—A review, Renew. Sustain. Energy Rev. 75 (2017) 451–460. https://doi.org/10.1016/j.rser.2016.11.010.
[18] L. Cheng, Nanofluid heat transfer technologies, Recent Patents Eng. 3 (2009) 1–7. https://doi.org/10.2174/187221209787259875.
[19] D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Lett. 2 (1981) 126–129. https://doi.org/10.1109/EDL.1981.25367.
[20] A.G. Fedorov, R. Viskanta, Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging, Int. J. Heat Mass Transf. 43 (2000) 399–415. https://doi.org/10.1016/S0017-9310(99)00151-9.
[21] T. Fend, W. Völker, R. Miebach, O. Smirnova, D. Gonsior, et al., Experimental investigation of compact silicon carbide heat exchangers for high temperatures, Int. J. Heat Mass Transf. 54 (2011) 4175–4181. https://doi.org/10.1016/j.ijheatmasstransfer.2011.05.028.
[22] R.J. Kee, B.B. Almand, J.M. Blasi, B.L. Rosen, M. Hartmann, et al., The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger, Appl. Therm. Eng. 31 (2011) 2004–2012. https://doi.org/10.1016/j.applthermaleng.2011.03.009.
[23] B. Alm, U. Imke, R. Knitter, U. Schygulla, S. Zimmermann, Testing and simulation of ceramic micro heat exchangers, Chem. Eng. J. 135 (2008) S179–S184. https://doi.org/10.1016/j.cej.2007.07.005.
[24] B.G. Carman, J.S. Kapat, L.C. Chow, L. An, Impact of a ceramic microchannel heat exchanger on a micro turbine, Turbo Expo, ASME. 1 (2002) 1053–1060. https://doi.org/10.1115/GT2002-30544.
[25] V. Nagarajan, Y. Chen, Q. Wang, T. Ma, Hydraulic and thermal performances of a novel configuration of high temperature ceramic plate-fin heat exchanger, Appl. Energy. 113 (2014) 589–602. https://doi.org/10.1016/j.apenergy.2013.07.037.
[26] S. Nekahi, M. Vajdi, F. Sadegh Moghanlou, K. Vaferi, A. Motallebzadeh, et al., TiB2–SiC-based ceramics as alternative efficient micro heat exchangers, Ceram. Int. 45 (2019). 19060–19067. https://doi.org/10.1016/j.ceramint.2019.06.150.
[27] A. Dwivedi, M. Mohsin Khan, H.S. Pali, Numerical analysis of microchannel heat sink composed of SiC and CNT reinforced ZrB2 composites, J. Eng. Res. 10 (2022) 1–15. https://doi.org/10.36909/jer.18359.
[28] H. Shi, T. Ma, W. Chu, Q. Wang, Optimization of inlet part of a microchannel ceramic heat exchanger using surrogate model coupled with genetic algorithm, Energy Convers. Manag. 149 (2017) 988–996. https://doi.org/10.1016/j.enconman.2017.04.035.
[29] C. Huo, L. Zhou, L. Guo, J. Wang, Y. Li, et al., Effect of the Al2O3 additive on the high temperature ablation behavior of the ZrC–ZrO2 coating for SiC-coated carbon/carbon composites, Ceram. Int. 45 (2019) 23180–23195. https://doi.org/10.1016/j.ceramint.2019.08.014.
[30] C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis, Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system, Appl. Therm. Eng. 27 (2007) 1501–1506. https://doi.org/10.1016/j.applthermaleng.2006.09.028.
[31] G. Davoudi, M.M. Sheikhi, Z. Balak, S. Yousefzadeh, Applying the Taguchi to Optimization the densification, and flexural strength of ZrB2–SiC–ZrC-CNFs, Mater. Chem. Phys. 301 (2023) 127625. https://doi.org/10.1016/j.matchemphys.2023.127625.
[32] L. Zhang, Q. Yao, Y. Ma, B. Sun, C. Shao, et al., Taguchi method-assisted optimization of multiple effects on the optical and luminescence performance of Ce:YAG transparent ceramics for high power white LEDs, J. Mater. Chem. C. 7 (2019) 11431–11440. https://doi.org/10.1039/C9TC03916C.
[33] M. Naderi, M. Vajdi, F. Sadegh Moghanlou, H. Nami, Sensitivity analysis of fluid flow parameters on the performance of fully dense ZrB2-made micro heat exchangers, Synth. Sinter. 3 (2023) 88–106. https://doi.org/10.53063/synsint.2023.32143.
[34] P. Chokkalingam, H. El-Hassan, A. El-Dieb, A. El-Mir, Multi-response optimization of ceramic waste geopolymer concrete using BWM and TOPSIS-based taguchi methods, J. Mater. Res. Technol. 21 (2022) 4824–4845. https://doi.org/10.1016/j.jmrt.2022.11.089.
[35] M. Shahedi Asl, M. Ghassemi Kakroudi, F. Golestani-Fard, H. Nasiri, et al., A Taguchi approach to the influence of hot pressing parameters and SiC content on the sinterability of ZrB2-based composites, Int. J. Refract. Met. Hard Mater. 51 (2015) 81–90. https://doi.org/10.1016/j.ijrmhm.2015.03.002.
[36] N.P. Kim, D. Cho, M. Zielewski, Optimization of 3D printing parameters of Screw Type Extrusion (STE) for ceramics using the Taguchi method, Ceram. Int. 45 (2019) 2351–2360. https://doi.org/10.1016/j.ceramint.2018.10.152.
[37] N.J. Rathod, M.K. Chopra, U.S. Vidhate, N.B. Gurule, U.V. Saindane, Investigation on the turning process parameters for tool life and production time using Taguchi analysis, Mater. Today Proc. 47 (2021) 5830–5835. https://doi.org/10.1016/j.matpr.2021.04.199.
[38] M. Vajdi, F. Sadegh Moghanlou, F. Sharifianjazi, M. Shahedi Asl, M. Shokouhimehr, A review on the Comsol Multiphysics studies of heat transfer in advanced ceramics, J. Compos. Compd. 2 (2020) 35–44. https://doi.org/10.29252/jcc.2.1.5.
[39] R.K. Shah, D.P. Sekuli, Fundamentals of heat exchanger design, John Wiley & Sons, Inc., Hoboken, NJ, USA. (2003). https://doi.org/10.1002/9780470172605.
[40] R.M. Sarviya, V. Fuskele, Review on thermal conductivity of nanofluids, Mater. Today Proc. 4 (2017) 4022–4031. https://doi.org/10.1016/j.matpr.2017.02.304.
[41] C.H. Li, G.P. Peterson, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. Appl. Phys. 99 (2006) 084314. https://doi.org/10.1063/1.2191571.
[42] S.M.S. Murshed, K.C. Leong, C. Yang, A model for predicting the effective thermal conductivity of nanoparticle-fluid suspensions, Int. J. Nanosci. 05 (2006) 23–33. https://doi.org/10.1142/S0219581X06004127.

Cited By

Crossref Google Scholar
Numerical assessment of ceramic micro heat exchangers working with nanofluids by Taguchi optimization approach
Submitted
2023-08-06
Published
2023-09-22
How to Cite
Naderi, M., Vajdi, M., Sadegh Moghanlou, F., & Nami, H. (2023). Numerical assessment of ceramic micro heat exchangers working with nanofluids by Taguchi optimization approach. Synthesis and Sintering, 3(3), 166-178. https://doi.org/10.53063/synsint.2023.33169

Most read articles by the same author(s)