Synthesis and doping of high-temperature resistant spinel nano pigments: A review

  • Rayehe Tavakolipour 1
  • Reza Pournajaf 2
  • Egle Grazenaite 3
  • 1 Department of Materials Engineering, Naghshejahan Institute of Higher Education, Baharestan, Isfahan, Iran
  • 2 Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • 3 Department of Inorganic Chemistry, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania

Abstract

Spinel nano-pigments are high-performance super small particles, combining the stable properties of the spinel structures with the high activity of Nanomaterials. While entrapment of highly toxic yet beautiful chromophores in the spinel structure diminishes the toxicity and improves the thermal resistance, a high surface area provided by the nano-scale pigments results in a uniform bright coating with a sufficiently high color strength and enhanced light transmission. Although the spinel nano pigments are promising for the coating and ceramic industries, the applications are limited, mostly due to the required high sintering temperature. Various synthesis processes have been tried for these pigments with the sol-gel method being the most frequent one. Many elements have been considered as dopants for these spinel systems to enhance, change, or improve the optical and physical properties. This comprehensive review aims to summarize the work done in this field, covering almost 20 years of research dedicated to the synthesis and doping of spinel nano pigments.

Downloads

Download data is not yet available.
Keywords: Spinel, Nano pigments, Doping, Synthesis, High-temperature resistant

References

[1] G. Buxbaum, G. Pfaff, Industrial inorganic pigments, John Wiley & Sons. (2005). https://doi.org/10.1002/3527603735.
[2] R.A. Eppler, Colorants for Ceramics, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Ltd. (2013). https://doi.org/10.1002/0471238961.0315121505161612.a01.
[3] Y. El Jabbar, H. Lakhlifi, R. El Ouatib, L. Er-Rakho, S. Guillemet-Fritsch, B. Durand, Preparation and characterisation of green nano-sized ceramic pigments with the spinel structure AB2O4 (A = Co, Ni and B = Cr, Al), Solid State Commun. 334–335 (2021) 114394. https://doi.org/10.1016/j.ssc.2021.114394.
[4] L. Hao, Y. Cai, R. Wang, Preparation of Ultrafine Pigment Dispersion and Investigation of its Adsorption Performance on Cationized Flax Substrate, Adsorpt. Sci. Technol. 29 (2011) 875–885. https://doi.org/10.1260/0263-6174.29.9.8.
[5] T. Tsurumi, H. Hirayama, M. Vacha, T. Taniyama, Nanoscale physics for materials science, CRC Press. (2009). https://doi.org/10.1201/b15942.
[6] P.M.T. Cavalcante, M. Dondi, G. Guarini, M. Raimondo, G. Baldi, Colour performance of ceramic nano-pigments, Dyes Pigm. 80 (2009) 226–232. https://doi.org/10.1016/j.dyepig.2008.07.004.
[7] N. Serpone, D. Dondi, A. Albini, Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products, Inorg. Chim. Acta. 360 (2007) 794–802. https://doi.org/10.1016/j.ica.2005.12.057.
[8] P. Villars, K. Cenzual, R. Gladyshevskii, Inorganic Substances. Handbook, De Gruyter, Berlin, Boston. (2017). https://doi.org/10.1515/9783110445404.
[9] J. Yan, J. Huang, T. Zhang, H. Tian, J. Yu, et al., Investigation of the microstructure, cation distribution and optical properties of nanoscale NixMg1-xAl2O4 spinel pigments, Ceram. Int. 45 (2019) 14073–14083. https://doi.org/10.1016/j.ceramint.2019.04.106.
[10] H.S.t.C. O’Neill, M. James, W.A. Dollase, S.A.T. Redfern, Temperature dependence of the cation distribution in CuAl2O4 spinel, Eur. J. Mineral. 17 (2005) 581–586. https://doi.org/10.1127/0935-1221/2005/0017-0581.
[11] H.E.H. Sadek, R.M. Khattab, A.A. Gaber, M.F. Zawrah, Nano Mg1-xNixAl 2O4 spinel pigments for advanced applications, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 125 (2014) 353–358. https://doi.org/10.1016/j.saa.2014.01.115.
[12] N. Yongvanich, J. Panthasri, P. Manomaipermpoon, K. Noithai, Development of Zn-Al-Cr-O Spinel Ceramic Color Pigment Nanopowders by Pechini Method, IEEE Nanotechnology Material and Devices Conference, Singapore. (2017). https://doi.org/10.1109/NMDC.2017.8350541.
[13] H.R. Hedayati, A.A. Sabbagh Alvani, H. Sameie, R. Salimi, S. Moosakhani, et al., Synthesis and characterization of Co1-xZnxCr2-yAlyO4 as a near-infrared reflective color tunable nano-pigment, Dyes Pigm. 113 (2015) 588–595. https://doi.org/10.1016/j.dyepig.2014.09.030.
[14] W. Bao, F. Ma, Y. Zhang, X. Hao, Z. Deng, et al., Synthesis and characterization of Fe3+ doped Co0.5Mg0.5Al2O4 inorganic pigments with high near-infrared reflectance, Powder Technol. 292 (2016) 7–13. https://doi.org/10.1016/j.powtec.2016.01.013.
[15] L. Tan, Q. Wang, Z. Cheng, Z. Hu, K. Liu, et al., Research on the low-temperature synthesis of cobalt aluminum spinel type blue pigments, J. Alloys Compd. 864 (2021) 158625. https://doi.org/10.1016/j.jallcom.2021.158625.
[16] E. Chavarriaga, A. Lopera, C. Bergmann, J. Alarcón, Effect of the substitution of Co2+by Mg2+on the color of the CoCr2O4ceramic pigment synthesized by solution combustion, Bol. Soc. Esp. Ceram. Vidr. 59 (2020) 176–184. https://doi.org/10.1016/j.bsecv.2019.11.001.
[17] L. Torkian, M. Daghighi, Z. Boorboor, Simple and efficient rout for synthesis of spinel nanopigments, J. Chem. 2013 (2013) 694531. https://doi.org/10.1155/2013/694531.
[18] P. Ma, Q. Geng, X. Gao, S. Yang, G. Liu, CuCr2O4 Spinel Ceramic Pigments Synthesized by Sol-Gel Self-Combustion Method for Solar Absorber Coatings, J. Mater. Eng. Perform. 25 (2016) 2814–2823. https://doi.org/10.1007/s11665-016-2143-z.
[19] G. Buvaneswari, V. Aswathy, R. Rajakumari, Comparison of color and optical absorbance properties of divalent ion substituted Cu and Zn aluminate spinel oxides synthesized by combustion method towards pigment application, Dyes Pigm. 123 (2015) 413–419. https://doi.org/10.1016/j.dyepig.2015.08.024.
[20] P. Ma, Q. Geng, X. Gao, S. Yang, G. Liu, Spectrally selective Cu1.5Mn1.5O4 spinel ceramic pigments for solar thermal applications, RSC Adv. 6 (2016) 32947–32955. https://doi.org/10.1039/c6ra03300h.
[21] Q. Tang, H. Zhu, C. Chen, Y. Wang, Z. Zhu, et al., Preparation and characterization of nanoscale cobalt blue pigment for ceramic inkjet printing by sol-gel self-propagating combustion, Mater. Res. 20 (2017) 1340–1344. https://doi.org/10.1590/1980-5373-MR-2017-0322.
[22] A.A. Ali, E. El Fadaly, I.S. Ahmed, Near-infrared reflecting blue inorganic nano-pigment based on cobalt aluminate spinel via combustion synthesis method, Dyes Pigm. 158 (2018) 451–462. https://doi.org/10.1016/j.dyepig.2018.05.058.
[23] B.S. Barros, A. Cristina, F.M. Costa, R.H.A.G. Kiminami, L. Da Gama, Preparation and Characterization of Spinel MCr2O4 (M = Zn, Co, Cu and Ni) by Combustion Reaction, J. Metastable Nanocryst. Mater. 20–21 (2004) 325–332. https://doi.org/10.4028/www.scientific.net/JMNM.20-21.325.
[24] M. Basak, M.L. Rahman, M.F. Ahmed, B. Biswas, N. Sharmin, Calcination effect on structural, morphological and magnetic properties of nano-sized CoFe2O4 developed by a simple co-precipitation technique, Mater. Chem. Phys. 264 (2021) 124442. https://doi.org/10.1016/j.matchemphys.2021.124442.
[25] A. Fernández-Osorio, C.E. Rivera, A. Vázquez-Olmos, J. Chávez, Luminescent ceramic nano-pigments based on terbium-doped zinc aluminate: Synthesis, properties and performance, Dyes Pigm. 119 (2015) 22–29. https://doi.org/10.1016/j.dyepig.2015.03.021.
[26] A. Fernández-Osorio, E. Pineda-Villanueva, J. Chávez-Fernández, Synthesis of nanosized (Zn1-xCox)Al2O4 spinels: New pink ceramic pigments, Mater. Res. Bull. 47 (2012) 445–452. https://doi.org/10.1016/j.materresbull.2011.10.024.
[27] I.S. Ahmed, S.A. Shama, M.M. Moustafa, H.A. Dessouki, A.A. Ali, Synthesis and spectral characterization of CoxMg1-xAl2O4 as new nano-coloring agent of ceramic pigment, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 74 (2009) 665–672. https://doi.org/10.1016/j.saa.2009.07.024.
[28] M. Rahimian, E. Saebnoori, S.A. Hassanzadeh-Tabrizi, Synthesis and characterization of nano-ceramic pigment Co0.5Zn0.5Al2O4 via polyacrylamide gel method, Pigm. Resin Technol. 49 (2020) 189–195. https://doi.org/10.1108/PRT-07-2019-0062.
[29] N. Zhou, Y. Li, Y. Zhang, Y. Shu, S. Nian, et al., Synthesis and characterization of Co1-xCaxAl2O4 composite blue nano-pigments by the polyacrylamide gel method, Dyes Pigm. 148 (2018) 25–30. https://doi.org/10.1016/j.dyepig.2017.08.057.
[30] M. Ahmadyari-Sharamin, S.A. Hassanzadeh-Tabrizi, Polyacrylamide gel synthesis, characterization, and optical properties of Co1-xNixCr2O4 spinel nanopigment, J. Solgel Sci. Technol. 99 (2021) 534–545. https://doi.org/10.1007/s10971-021-05590-2.
[31] M. Jafari, S.A. Hassanzadeh-Tabrizi, Preparation of CoAl2O4 nanoblue pigment via polyacrylamide gel method, Powder Technol. 266 (2014) 236–239. https://doi.org/10.1016/j.powtec.2014.06.018.
[32] H. Gao, H. Yang, S. Wang, D. Li, F. Wang, et al., A new route for the preparation of CoAl2O4 nanoblue pigments with high uniformity and its optical properties, J. Solgel Sci. Technol. 86 (2018) 206–216. https://doi.org/10.1007/s10971-018-4609-y.
[33] M. Jafari, S.A. Hassanzadeh-Tabrizi, M. Ghashang, R. Pournajaf, Characterization of Ba2+-added alumina/cobalt nanoceramic pigment prepared by polyacrylamide gel method, Ceram. Int. 40 (2014) 11877–11881. https://doi.org/10.1016/j.ceramint.2014.04.022.
[34] M. Karmaoui, N.J.O. Silva, V.S. Amaral, A. Ibarra, Á. Millán, F. Palacio, Synthesis of cobalt aluminate nanopigments by a non-aqueous sol-gel route, Nanoscale. 5 (2013) 4277–4283. https://doi.org/10.1039/c3nr34229h.
[35] A. Sutka, A. Borisova, J. Kleperis, G. Mezinskis, D. Jakovlevs, I. Juhnevica, Effect of nickel addition on colour of nanometer spinel zinc ferrite pigments, J. Aust. Ceram. Soc. 48 (2012) 150–155.
[36] S. Kurajica, J. Popović, E. Tkalčec, B. Gržeta, V. Mandić, The effect of annealing temperature on the structure and optical properties of sol-gel derived nanocrystalline cobalt aluminate spinel, Mater. Chem. Phys. 135 (2012) 587–593. https://doi.org/10.1016/j.matchemphys.2012.05.030.
[37] M. Salavati-Niasari, F. Davar, M. Farhadi, Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol-gel method, J. Solgel Sci. Technol. 51 (2009) 48–52. https://doi.org/10.1007/s10971-009-1940-3.
[38] I. Khosravi, M. Yazdanbakhsh, E.K. Goharshadi, A. Youssefi, Preparation of nanospinels NiMnxFe2-xO4 using sol-gel method and their applications on removal of azo dye from aqueous solutions, Mater. Chem. Phys. 130 (2011) 1156–1161. https://doi.org/10.1016/j.matchemphys.2011.08.048.
[39] P. Ma, Q. Geng, X. Gao, S. Yang, G. Liu, Solution combustion of spinel CuMn2O4 ceramic pigments for thickness sensitive spectrally selective (TSSS) paint coatings, Ceram. Int. 42 (2016) 11966–11973. https://doi.org/10.1016/j.ceramint.2016.04.122.
[40] A. Rosati, M. Fedel, S. Rossi, YIn0.9Mn0.1O3–ZnO NIR reflective nano-pigment exhibiting three different colors: Ochre, cyan blue, and deep blue, J. Solid State Chem. 299 (2021) 122176. https://doi.org/10.1016/j.jssc.2021.122176.
[41] F. Hcini, S. Hcini, M.M. Almoneef, M.H. Dhaou, M.S. Alshammari, et al., Thermal, microstructural, optical, magnetic and magnetocaloric studies for Ni0.5Mn0.5Cr2O4 chromite spinel prepared using sol-gel method, J. Mol. Struct. 1243 (2021) 130769. https://doi.org/10.1016/j.molstruc.2021.130769.
[42] F.F. Abdel-Mohsen, H.S.A. Emira, Thermally stable pigments based on mixed metal oxides, Pigm. Resin Technol. 42 (2013) 231–236. https://doi.org/10.1108/PRT-03-2011-0013.
[43] A. Gatelyte, D. Jasaitis, A. Beganskiene, A. Kareiva, Sol-gel synthesis and characterization of selected transition metal nano-ferrites, Medziagotyra. 17 (2011) 302–307. https://doi.org/10.5755/j01.ms.17.3.598.
[44] Q. Lu, Z. Wei, X. Wu, S. Huang, M. Ding, J. Ma, Electronic structure and optical properties of spinel structure Zn1-xNixAl2O4 nanopowders synthesized by sol–gel method, Chem. Phys. Lett. 772 (2021) 138582. https://doi.org/10.1016/j.cplett.2021.138582.
[45] S. Jose, A. Jayaprakash, S. Laha, S. Natarajan, K.G. Nishanth, M.L.P. Reddy, YIn0.9Mn0.1O3-ZnO nano-pigment exhibiting intense blue color with impressive solar reflectance, Dyes Pigm. 124 (2016) 120–129. https://doi.org/10.1016/j.dyepig.2015.09.014.
[46] E. Grazenaite, V. Jasulaitiene, R. Ramanauskas, A. Kareiva, Sol–gel synthesis, characterization and application of lanthanide-doped cobalt chromites (CoCr2–xLnxO4; Ln = Tm3+ and Yb3+), J. Eur. Ceram. Soc. 38 (2018) 3361–3368. https://doi.org/10.1016/j.jeurceramsoc.2018.03.038.
[47] Y. El Jabbar, H. Lakhlifi, R. El Ouatib, L. Er-Rakho, S. Guillemet, et al., Structure, microstructure, optical and magnetic properties of cobalt aluminate nanopowders obtained by sol-gel process, J. Non Cryst. Solids. 542 (2020) 120115. https://doi.org/10.1016/j.jnoncrysol.2020.120115.
[48] E. Grazenaite, J. Pinkas, A. Beganskiene, A. Kareiva, Sol-gel and sonochemically derived transition metal (Co, Ni, Cu, and Zn) chromites as pigments: A comparative study, Ceram. Int. 42 (2016) 9402–9412. https://doi.org/10.1016/j.ceramint.2016.02.163.
[49] M. Salavati-Niasari, M. Farhadi-Khouzani, F. Davar, Bright blue pigment CoAl2O4 nanocrystals prepared by modified sol-gel method, J. Solgel Sci. Technol. 52 (2009) 321–327. https://doi.org/10.1007/s10971-009-2050-y.
[50] M. Saeed, M. Rani, K. Batool, H. Batool, A. Younus, et al., Synthesis and fabrication of co1−xnixcr2o4 chromate nanoparticles and the effect of ni concentration on their bandgap, structure, and optical properties, J. Compos. Sci. 5 (2021) 247. https://doi.org/10.3390/jcs5090247.
[51] M. Saeed, M. Rani, K. Batool, H. Batool, A. Younus, et al., Effect of Li concentration on the structural and optical properties of Co1-xLixCr2O4 chromate nanoparticles prepared by sol-gel method, Phys. Sci. (2021) 2021050085. https://doi.org/10.20944/preprints202105.0085.v1.
[52] Y. Benrighi, N. Nasrallah, T. Chaabane, H. Belkacemi, K.W. Bourkeb, et al., Characterization and application of the spinel CuCr2O4 synthesized by sol–gel method for sunset yellow photodegradation, J. Solgel Sci. Technol. 101 (2022) 390–400. https://doi.org/10.1007/s10971-021-05697-6.
[53] E. Grazenaite, E. Garskaite, Z. Stankeviciute, E. Raudonyte-Svirbutaviciene, A. Zarkov, A. Kareiva, Ga-substituted cobalt-chromium spinels as ceramic pigments produced by sol–gel synthesis, Crystals (Basel). 10 (2020) 1–9. https://doi.org/10.3390/cryst10121078.
[54] K. Mokhtari, S. Salem, A novel method for the clean synthesis of nano-sized cobalt based blue pigments, RSC Adv. 7 (2017) 29899–29908. https://doi.org/10.1039/c7ra03771f.
[55] F. Goga, R.A. Bortnic, A. Avram, M. Zagrai, L. Barbu Tudoran, R.A. Mereu, The Effect of Ni2+ Ions Substitution on Structural, Morphological, and Optical Properties in CoCr2O4 Matrix as Pigments in Ceramic Glazes, Materials. 15 (2022) 8713. https://doi.org/10.3390/ma15248713.
[56] M. Rajabi, P. Kharaziyan, M. Montazeri-Pour, Microwave-assisted processing of cobalt aluminate blue nano-ceramic pigment using sol–gel method, J. Aust. Ceram. Soc. 55 (2019) 219–227. https://doi.org/10.1007/s41779-018-0226-z.
[57] Y. Zhang, Y. Zhao, Z. Wang, L. Shang, Effective synthesis of green nano-sized ceramic pigments by co-doping Zn2+, Cr3+ and Sm3+ into the cobalt-aluminate, Int. J. Appl. Ceram. Technol. 17 (2020) 2368–2375. https://doi.org/10.1111/ijac.13550.
[58] D.Y. Shin, K.N. Kim, S.M. Han, Synthesis and Characterization of Nano-Size CoAl2O4 Spinel Powder Using Sol-Gel Process, Mater. Sci. Forum. 544–545 (2007) 869–872. https://doi.org/10.4028/www.scientific.net/msf.544-545.869.
[59] M. Rani, M. Jabeen, K. Batool, A. Mehmood, R. Shafique, N. Akhtar, T. Yaqoob, Z. Maliha, M. Akram, M. Umbreen, M. Sattar, Synthesis and characterization of MgCr2O4 spinel nanoparticles by sol gel method, Digest J. Nanomater. Biostruct. 16 (2021) 951–958. https://doi.org/10.15251/DJNB.2021.163.951.
[60] Y. Chang, T. Feng, C. Wu, Y. Chen, K. Ke, et al., Controlled synthesis of blue spherical CoAl2O4 pigment powder in Pickering emulsion assisted with a hydrothermal process, Adv. Powder Technol. 29 (2018) 1222–1229. https://doi.org/10.1016/j.apt.2018.02.014.
[61] Q. Wang, Y. Wang, K. Liu, J. Liu, C. Wang, et al., High-performance spherical urchin-like CoAl2O4 pigments prepared via microemulsion-hydrothermal-precipitation method, Adv. Powder Technol. 31 (2020) 1290–1301. https://doi.org/10.1016/j.apt.2019.12.041.
[62] S. Obata, M. Kato, H. Yokoyama, Y. Iwata, M. Kikumoto, O. Sakurada, Synthesis of nano CoAl2O4 pigment for ink-jet printing to decorate porcelain, J. Ceram. Soc. Jpn. 119 (2011) 208–213. https://doi.org/10.2109/jcersj2.119.208.
[63] I. Miron, C. Enache, I. Grozescu, Doped zinc aluminate spinel synthesized by hydrothermal method, Digest J. Nanomater. Biostruct. 7 (2012) 967–972.
[64] H. Shang-Pan, W. Zhi-Qiang, W. Xiao-Juan, S. Ji-Wen, Optical properties of Cr doped ZnAl2O4 nanoparticles with Spinel structure synthesized by hydrothermal method, Mater. Res. Express. 7 (2019) 015025. https://doi.org/10.1088/2053-1591/ab6125.
[65] Z. Chen, E. Shi, W. Li, Y. Zheng, W. Zhong, Hydrothermal synthesis and optical property of nano-sized CoAl2O4 pigment, Mater. Lett. 55 (2002) 281–284. https://doi.org/10.1016/S0167-577X(02)00378-6.
[66] K. Nejati, R. Zabihi, Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method, Chem. Cent. J. 6 (2012) 23. https://doi.org/10.1186/1752-153X-6-23.
[67] M. Tanveer, I. Nisa, G. Nabi, K. Hussain, S. Khalid, M.A. Qadeer, Sol-Gel Extended Hydrothermal Pathway for Novel Cd-Zn Co-Doped Mg-Ferrite Nano-Structures and a Systematic Study of Structural, Optical and Magnetic Properties, SSRN. (2022). https://doi.org/10.2139/ssrn.4007232.
[68] X. Liu, G. Qiu, X. Li, Shape-controlled synthesis and properties of uniform spinel cobalt oxide nanocubes, Nanotechnology. 16 (2005) 3035–3040. https://doi.org/10.1088/0957-4484/16/12/051.
[69] J. Lu, K. Minami, S. Takami, T. Adschiri, Rapid and continuous synthesis of cobalt aluminate nanoparticles under subcritical hydrothermal conditions with in-situ surface modification, Chem. Eng. Sci. 85 (2013) 50–54. https://doi.org/10.1016/j.ces.2012.01.061.
[70] A.L. Fernández, L. de Pablo, Formation and the colour development in cobalt spinel pigments, Pigm. Resin Technol. 31 (2002) 350–356. https://doi.org/10.1108/03699420210449043.
[71] M.M. Rahman, S.B. Khan, M. Faisal, A.M. Asiri, K.A. Alamry, Highly sensitive formaldehyde chemical sensor based on hydrothermally prepared spinel ZnFe2O4 nanorods, Sens. Actuators B: Chem. 171–172 (2012) 932–937. https://doi.org/10.1016/j.snb.2012.06.006.
[72] J.H. Kim, B.R. Son, D.H. Yoon, K.T. Hwang, H.G. Noh, et al., Characterization of blue CoAl 2O 4 nano-pigment synthesized by ultrasonic hydrothermal method, Ceram. Int. 38 (2012) 5707–5712. https://doi.org/10.1016/j.ceramint.2012.04.015.
[73] N. Betancur Granados, E. Yi, R.M. Laine, O.J. Restrepo Baena, Synthesis of Zn1−x CoxAl2O4 Spinel Nanoparticles by Liquid-Feed Flame Spray Pyrolysis: Ceramic Pigments Application, JOM. 68 (2016) 304–310. https://doi.org/10.1007/s11837-015-1658-3.
[74] N. Betancur-Granados, O.J. Restrepo-Baena, Flame spray pyrolysis synthesis of ceramic nanopigments CoCr2O4: The effect of key variables, J. Eur. Ceram. Soc. 37 (2017) 5051–5056. https://doi.org/10.1016/j.jeurceramsoc.2017.06.024.
[75] R.M. Khattab, H.E.H. Sadek, A.A. Gaber, Synthesis of CoxMg1−xAl2O4 nanospinel pigments by microwave combustion method, Ceram. Int. 43 (2017) 234–243. https://doi.org/10.1016/j.ceramint.2016.09.144.
[76] D.F.L. Horsth, J.O. Primo, M. Dalpasquale, C. Bittencourt, F.J. Anaissi, Colored aluminates pigments obtained from metallic aluminum waste, an opportunity in the circular economy, Clean Eng. Technol. 5 (2021) 100313. https://doi.org/10.1016/j.clet.2021.100313.
[77] S.A. Hassanzadeh-Tabrizi, S. Bakhtiarvand, R. Pournajaf, Polyacrylamide gel synthesis of Ni1-xCuxAl2O4 nano-pigments with photocatalytic properties, Opt. Mater. 147 (2024) 114637. https://doi.org/10.1016/j.optmat.2023.114637.
[78] O.O. Vasil’kov, O.P. Barinova, S. V. Kirsanova, N.A. Marnautov, A.B. Elfimov, Ceramic Black Pigments Based on Chromium-Nickel Spinel NiCr2O4, Glass Ceram. 74 (2017) 236–239. https://doi.org/10.1007/s10717-017-9970-8.
[79] E. Ozel, S. Turan, Production and characterisation of iron-chromium pigments and their interactions with transparent glazes, J. Eur. Ceram. Soc. 23 (2003) 2097–2104. https://doi.org/10.1016/S0955-2219(03)00036-0.
[80] B. He, Y. Du, H. Xu, J. Ma, C. Cheng, M. Du, Synthesis of Ceramic Pigments with Chromium Content from Leather Waste, Trans. Indian Ceram. Soc. 80 (2021) 103–109. https://doi.org/10.1080/0371750X.2021.1887766.
[81] A.C.F.M. Costa, A.M.D. Leite, H.S. Ferreira, R.H.G.A. Kiminami, S. Cava, L. Gama, Brown pigment of the nanopowder spinel ferrite prepared by combustion reaction, J. Eur. Ceram. Soc. 28 (2008) 2033–2037. https://doi.org/10.1016/j.jeurceramsoc.2007.12.039.
[82] B. Tanisan, S. Turan, Synthesis of fe-mn black pigments by using hematite waste and manganese ore mixtures, Trans. Indian Ceram. Soc. 71 (2012) 17–20. https://doi.org/10.1080/0371750X.2012.689506.
[83] C.S. Xavier, R.A. Candelia, M.I.B. Bernardi, S.J.G. Lima, E. Longo, et al., Effect of the modifier ion on the properties of MgFe2O4 and ZnFe2O4 pigments, J. Therm. Anal. Calorim. 87 (2007) 709–713. https://doi.org/10.1007/s10973-006-7744-6.
[84] R.A. Candeia, M.A.F. Souza, M.I.B. Bernardi, S.C. Maestrelli, I.M.G. Santos, et al., MgFe2O4 pigment obtained at low temperature, Mater. Res. Bull. 41 (2006) 183–190. https://doi.org/10.1016/j.materresbull.2005.07.019.
[85] E.B. Faulkner, R.J. Schwartz, High performance pigments, Wiley-VCH. (2009). https://doi.org/10.1002/9783527626915.
[86] S.A. Eliziário, J.M. De Andrade, S.J.G. Lima, C.A. Paskocimas, L.E.B. Soledade, et al., Black and green pigments based on chromium-cobalt spinels, Mater. Chem. Phys. 129 (2011) 619–624. https://doi.org/10.1016/j.matchemphys.2011.05.001.
[87] D. Fritsch, Electronic and optical properties of spinel zinc ferrite: Ab initio hybrid functional calculations, J. Phys. Condens. Matter. 30 (2018) 095502. https://doi.org/10.1088/1361-648X/aaa7c5.
[88] G.N. Maslennikova, Pigments of the Spinel Type, Glass Ceram. 58 (2001) 216–220. https://doi.org/10.1023/A:1012347200136.
[89] L. Dimesso, Pechini processes: An alternate approach of the sol-gel method, preparation, properties, and applications, in: Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications, Springer International Publishing. (2018) 1067–1087. https://doi.org/10.1007/978-3-319-32101-1_123.
[90] A.P. Amosov, Nanomaterials of SHS technology for tribological applications: A review, Russ. J. Non-Ferr. Met. 58 (2017) 530–539. https://doi.org/10.3103/S1067821217050029.
[91] Q. Zhao, Z. Yan, C. Chen, J. Chen, Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and beyond, Chem. Rev. 117 (2017) 10121–10211. https://doi.org/10.1021/acs.chemrev.7b00051.
[92] I.S. Ahmed, H.A. Dessouki, A.A. Ali, Synthesis and characterization of new nano-particles as blue ceramic pigment, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 71 (2008) 616–620. https://doi.org/10.1016/j.saa.2007.12.050.
[93] L.H. Sperling, Introduction to physical polymer science, John Wiley & Sons. (2006). https://doi.org/10.1002/0471757128.
[94] G. Xiong, R. Guo, W. Zhang, R. Pournajaf, M. Tayebi, Effect of adding silver on photocatalytic properties of ZnAl2O4 nanopowder synthesized using microemulsion and polyacrylamide gel methods for recycled water, Mater. Chem. Phys. 315 (2024) 128898. https://doi.org/10.1016/j.matchemphys.2024.128898.
[95] B. Baruah, S. Bhattacharyya, R. Sarkar, Synthesis of magnesium aluminate spinel—An overview, Int. J. Appl. Ceram. Technol. 20 (2023) 1331–1349. https://doi.org/10.1111/ijac.14309.
[96] M. Kurian, Green synthesis routes for spinel ferrite nanoparticles: a short review on the recent trends, J. Aust. Ceram. Soc. 59 (2023) 1161–1175. https://doi.org/10.1007/s41779-023-00917-4.

Cited By

Crossref Google Scholar
Synthesis and doping of high-temperature resistant spinel nano pigments: A review
Submitted
2023-11-23
Published
2024-03-24
How to Cite
Tavakolipour, R., Pournajaf, R., & Grazenaite, E. (2024). Synthesis and doping of high-temperature resistant spinel nano pigments: A review. Synthesis and Sintering, 4(1), 17-28. https://doi.org/10.53063/synsint.2024.41191