Effects of die geometry and insulation on the energy and electrical parameters analyses of spark plasma sintered TiC ceramics

  • Milad Sakkaki 1
  • Milad Foroutani 2
  • Peyman Zare 3
  • 1 Department of Mechanical Engineering, Faculty of Manufacturing, University of Tabriz, Tabriz, Iran
  • 2 Department of Mechanical Engineering, University of Tarbiat Modares, Tehran, Iran
  • 3 Department of Electrical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

This work conducts a numerical simulation to investigate the temperature and electric current distribution during the spark plasma sintering (SPS) process using the finite element method (FEM) carried out in COMSOL Multiphysics software. The main goal is to optimize the SPS process for titanium carbide (TiC) ceramics, with a particular focus on the effects of insulation and die geometry (height and thickness). For the TiC material, the ideal sintering temperature is set at 2000 °C. The study analyzes eight case studies, involving a base case, an insulating case, and six cases with various thicknesses and heights, to evaluate the effectiveness of the suggested optimization. The results show that using insulation on the die surface reduces heat transfer from the die surface significantly, which leads to a 63% decrease in input power consumption when compared to the basic scenario. Based on a correlation study between energy and electricity, increasing die thickness raises the cross-sectional area of the electric current, which raises the amount of electric power required to attain the 2000 °C sintering temperature. The results indicate the temperature distribution in the sample is more sensitive to changes in die height than to changes in die thickness.

Downloads

Download data is not yet available.
Keywords: Spark plasma sintering, UHTC, Electrical analysis, Energy optimization, Titanium carbide, Simulation

References

[1] A.A. Saad, C. Martinez, R.W. Trice, Radiation heat transfer during hypersonic flight: A review of emissivity measurement and enhancement approaches of ultra‐high temperature ceramics, Int. J. Ceram. Eng. Sci. 5 (2023) e10171. https://doi.org/10.1002/ces2.10171.
[2] E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz, I. Talmy, UHTCs: Ultra-High Temperature Ceramic materials for extreme environment applications, Electrochem. Soc. Interface. 16 (2007) 30–36. https://doi.org/10.1149/2.F04074IF/XML.
[3] S.R. Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh, J.A. Salem, Evaluation of ultra-high temperature ceramics foraeropropulsion use, J. Eur. Ceram. Soc. 22 (2002) 2757–2767. https://doi.org/10.1016/S0955-2219(02)00140-1.
[4] M.J. Gasch, D.T. Ellerby, S.M. Johnson, Ultra High Temperature Ceramic Composites, Handbook of Ceramic Composites, Springer, Boston, MA. (2005) 197–224. https://doi.org/10.1007/0-387-23986-3_9.
[5] B. Liu, Y. Wang, C. Li, Z. Tian, L. Cheng, Research on the thermal shock simulation of the super high speed aircraft, Mech. Adv. Mater. Struct. 30 (2023) 1889–1896. https://doi.org/10.1080/15376494.2022.2046218.
[6] B.C. Wyatt, S.K. Nemani, G.E. Hilmas, E.J. Opila, B. Anasori, Ultra-high temperature ceramics for extreme environments, Nat. Rev. Mater. 2023 (2023) 1–17. https://doi.org/10.1038/s41578-023-00619-0.
[7] A. Nisar, R. Hassan, A. Agarwal, K. Balani, Ultra-high temperature ceramics: Aspiration to overcome challenges in thermal protection systems, Ceram. Int. 48 (2022) 8852–8881. https://doi.org/10.1016/J.CERAMINT.2021.12.199.
[8] A. Lynam, A.R. Romero, F. Xu, R.W. Wellman, T. Hussain, Thermal Spraying of Ultra-High Temperature Ceramics: A Review on Processing Routes and Performance, J. Therm. Spray Technol. 31 (2022) 745–779. https://doi.org/10.1007/s11666-022-01381-5.
[9] S. Kumar, A. Singh, Development, and characterisation of ultra-high-temperature ceramics composite (UHTC), Adv. Mater. Process. Technol. (2022) 1–10. https://doi.org/10.1080/2374068X.2022.2117443.
[10] F. Valizadeh Harzand, S. Anzani, A. Babapoor, Recent advances in synthesis of ultra-high temperature ceramic matrix composites, Synth. Sinter. 2 (2022) 186–190. https://doi.org/10.53063/synsint.2022.2475.
[11] V.K.V. Pasagada, N. Yang, C. Xu, Electron beam sintering (EBS) process for Ultra-High Temperature Ceramics (UHTCs) and the comparison with traditional UHTC sintering and metal Electron Beam Melting (EBM) processes, Ceram. Int. 48 (2022) 10174–10186. https://doi.org/10.1016/j.ceramint.2021.12.229.
[12] M. Jaberi Zamharir, M. Zakeri, M. Razavi, Challenges toward applying UHTC-based composite coating on graphite substrate by spark plasma sintering, Synth. Sinter. 1 (2021) 202–210. https://doi.org/10.53063/synsint.2021.1452.
[13] D. Ni, Y. Cheng, J. Zhang, J.-X. Liu, J. Zou, et al., Advances in ultra-high temperature ceramics, composites, and coatings, J. Adv. Ceram. 11 (2022) 1–56. https://doi.org/10.1007/s40145-021-0550-6.
[14] J. Binner, M. Porter, B. Baker, J. Zou, V. Venkatachalam, et al., Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs – a review, Int. Mater. Rev. 65 (2020) 389–444. https://doi.org/10.1080/09506608.2019.1652006.
[15] E. Ghasali, M. Shahedi Asl, Microstructural development during spark plasma sintering of ZrB2–SiC–Ti composite, Ceram. Int. 44 (2018) 18078–18083. https://doi.org/10.1016/J.CERAMINT.2018.07.011.
[16] M.S. Asl, B. Nayebi, Z. Ahmadi, M.J. Zamharir, M. Shokouhimehr, Effects of carbon additives on the properties of ZrB2–based composites: A review, Ceram. Int. 44 (2018) 7334–7348. https://doi.org/10.1016/J.CERAMINT.2018.01.214.
[17] K. Maca, Microstructure evolution during pressureless sintering of bulk oxide ceramics, Process. Appl. Ceram. 3 (2009) 13–17. https://doi.org/10.2298/PAC0902013M.
[18] Z. Zhang, X. Duan, B. Qiu, L. Chen, P. Zhang, et al., Microstructure evolution and grain growth mechanisms of h-BN ceramics during hot-pressing, J. Eur. Ceram. Soc. 40 (2020) 2268–2278. https://doi.org/10.1016/J.JEURCERAMSOC.2020.02.011.
[19] M.H. Lee, J.H. Park, S.D. Park, J.S. Rhyee, M.W. Oh, Grain growth mechanism and thermoelectric properties of hot press and spark plasma sintered Na-doped PbTe, J. Alloys Compd. 786 (2019) 515–522. https://doi.org/10.1016/J.JALLCOM.2019.01.387.
[20] Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci. 41 (2006) 763–777. https://doi.org/10.1007/s10853-006-6555-2.
[21] J. Guignard, M. Prakasam, A. Largeteau, High Pressure (HP) in Spark Plasma Sintering (SPS) Processes: Application to the Polycrystalline Diamond, Materials. 15 (2022) 4804. https://doi.org/10.3390/ma15144804.
[22] Y. Liu, S. Ge, Y. Huang, Z. Huang, D. Zhang, Influence of Sintering Process Conditions on Microstructural and Mechanical Properties of Boron Carbide Ceramics Synthesized by Spark Plasma Sintering, Materials. 14 (2021) 1100. https://doi.org/10.3390/ma14051100.
[23] V. Mamedov, Spark plasma sintering as advanced PM sintering method, Powder Metall. 45 (2002) 322–328. https://doi.org/10.1179/003258902225007041.
[24] H. Ding, Z. Zhao, J. Jin, L. Deng, P. Gong, X. Wang, Densification mechanism of Zr-based bulk metallic glass prepared by two-step spark plasma sintering, J. Alloys Compd. 850 (2021) 156724. https://doi.org/10.1016/j.jallcom.2020.156724.
[25] M. Tokita, Progress of spark plasma sintering (Sps) method, systems, ceramics applications and industrialization, Ceramics. 4 (2021) 160–198. https://doi.org/10.3390/ceramics4020014.
[26] A. Nisar, C. Zhang, B. Boesl, A. Agarwal, Unconventional materials processing using spark plasma sintering, Ceramics. 4 (2021) 20–39. https://doi.org/10.3390/ceramics4010003.
[27] S. Samal, O. Molnárová, F. Průša, J. Kopeček, L. Heller, et al., Net-shape NiTi shape memory alloy by spark plasma sintering method, Appl. Sci. 11 (2021) 1–18. https://doi.org/10.3390/app11041802.
[28] O. Guillon, J. Gonzalez‐Julian, B. Dargatz, T. Kessel, G. Schierning, et al., Field‐Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments, Adv. Eng. Mater. 16 (2014) 830–849. https://doi.org/10.1002/adem.201300409.
[29] Y. Pazhouhanfar, S.A. Delbari, M. Shahedi Asl, S. Shaddel, M. Pazhouhanfar, et al., Characterization of spark plasma sintered TiC–Si3N4 ceramics, Int. J. Refract. Met. Hard Mater. 95 (2021) 105444. https://doi.org/10.1016/j.ijrmhm.2020.105444.
[30] M. Saravana Kumar, S. Rashia Begum, M. Vasumathi, C.C. Nguyen, Q. Van Le, Influence of molybdenum content on the microstructure of spark plasma sintered titanium alloys, Synth. Sinter. 1 (2021) 41–47. https://doi.org/10.53063/synsint.2021.1114.
[31] B. Cai, H.-L. Zhuang, J. Pei, B. Su, J.-W. Li, et al., Spark plasma sintered Bi-Sb-Te alloys derived from ingot scrap: Maximizing thermoelectric performance by tailoring their composition and optimizing sintering time, Nano Energy. 85 (2021) 106040. https://doi.org/10.1016/j.nanoen.2021.106040.
[32] M. Sakkaki, S.M. Arab, In-situ synthesized phases during the spark plasma sintering of g-C3N4 added TiB2 ceramics: A thermodynamic approach, Synth. Sinter. 3 (2023) 73–78. https://doi.org/10.53063/SYNSINT.2023.32151.
[33] B. Li, Z. Yang, J. Jia, Y. Zhong, X. Liu, et al., High temperature thermal physical performance of BeO/UO2 composites prepared by spark plasma sintering (SPS), Scr. Mater. 142 (2018) 70–73. https://doi.org/10.1016/j.scriptamat.2017.08.031.
[34] A. Cincotti, A.M. Locci, R. Orrù, G. Cao, Modeling of SPS apparatus: Temperature, current and strain distribution with no powders, AIChE J. 53 (2007) 703–719. https://doi.org/10.1002/aic.11102.
[35] M. Sakkaki, S.M. Arab, Non-catalytic applications of g-C3N4: A brief review, Synth. Sinter. 2 (2022) 176–180. https://doi.org/10.53063/SYNSINT.2022.24126.
[36] S. Zhang, W. Liu, W. Wang, Y. Gao, A. Wang, et al., Numerical Simulation of Physical Fields during Spark Plasma Sintering of Boron Carbide, Materials. 16 (2023) 3967. https://doi.org/10.3390/ma16113967.
[37] M. Nöthe, J. Trapp, A.S. Semenov, B. Kieback, T. Wallmersperger, Miniaturised test-setup for Spark Plasma Sintering – experimental and numerical investigations, Powder Metall. 66 (2023) 461–471. https://doi.org/10.1080/00325899.2023.2219511.
[38] A.S. Semenov, J. Trapp, M. Nöthe, O. Eberhardt, B. Kieback, T. Wallmersperger, Thermo-electro-mechanical modeling of spark plasma sintering processes accounting for grain boundary diffusion and surface diffusion, Comput. Mech. 67 (2021) 1395–1407. https://doi.org/10.1007/s00466-021-01994-7.
[39] E. Ranjbarpour Niari, M. Vajdi, M. Sakkaki, S. Azizi, F. Sadegh Moghanlou, M. Shahedi Asl, Finite element simulation of disk‐shaped HfB 2 ceramics during spark plasma sintering process, Int. J. Appl. Ceram. Technol. 19 (2022) 344–357. https://doi.org/10.1111/ijac.13886.
[40] S. Mohammad Bagheri, M. Vajdi, F. Sadegh Moghanlou, M. Sakkaki, M. Mohammadi, et al., Numerical modeling of heat transfer during spark plasma sintering of titanium carbide, Ceram. Int. 46 (2020) 7615–7624. https://doi.org/10.1016/j.ceramint.2019.11.262.
[41] M. Sakkaki, F.S. Moghanlou, M. Vajdi, M.S. Asl, M. Mohammadi, M. Shokouhimehr, Numerical simulation of heat transfer during spark plasma sintering of zirconium diboride, Ceram. Int. 46 (2020) 4998–5007. https://doi.org/10.1016/j.ceramint.2019.10.240.
[42] H. Conrad, A.F. Sprecher, W.D. Cao, X.P. Lu, Electroplasticity—the effect of electricity on the mechanical properties of metals, JOM. 42 (1990) 28–33. https://doi.org/10.1007/BF03221075.
[43] S.R. Mousavi Aghdam, P. Zare, A. Babaei, R. Mohajery, The Superiority of Turbulent Current of Water-based Optimization for Speed Control of Brushless DC Motor, 8th International Conference on Technology and Energy Management (ICTEM). (2023) 1–7. https://doi.org/10.1109/ICTEM56862.2023.10084323.
[44] P. Zare, A. Dejamkhooy, I.F. Davoudkhani, Efficient expansion planning of modern multi-energy distribution networks with electric vehicle charging stations: A stochastic MILP model, Sustain. Energy Grids Netw. 38 (2024) 101225. https://doi.org/10.1016/J.SEGAN.2023.101225.
[45] P. Zare, I.F. Davoudkhani, R. Mohajeri, R. Zare, H. Ghadimi, Performance Analysis and Design of FOPDF(1+FOPI) Robust Controller Using Slim Mould Algorithm for Frequency Control in Offshore Fixed Platform Microgrid, 12th Smart Grid Conference (SGC). (2022) 1–7. https://doi.org/10.1109/SGC58052.2022.9998979.
[46] R. Mohajery, H. Shayeghi, P. Zare, Optimal FOTID Controller Design for Regulation of DC Motor Speed, Int. J. Tech. Phys. Probl. Eng. 14 (2022) 57–63.
[47] Y. Achenani, M. Saâdaoui, A. Cheddadi, G. Bonnefont, G. Fantozzi, Finite element modeling of spark plasma sintering: Application to the reduction of temperature inhomogeneities, case of alumina, Mater Des. 116 (2017) 504–514. https://doi.org/10.1016/j.matdes.2016.12.054.
[48] K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Van der Biest, Modelling of the temperature distribution during field assisted sintering, Acta Mater. 53 (2005) 4379–4388. https://doi.org/10.1016/j.actamat.2005.05.042.
[49] C. Manière, A. Pavia, L. Durand, G. Chevallier, K. Afanga, C. Estournès, Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process, J. Eur. Ceram. Soc. 36 (2016) 741–748. https://doi.org/10.1016/j.jeurceramsoc.2015.10.033.
[50] T. Matsumoto, A. Ono, Specific heat capacity and emissivity measurements of ribbon-shaped graphite using pulse current heating, Int. J. Thermophys. 16 (1995) 267–275. https://doi.org/10.1007/BF01438977/METRICS.
[51] T. Voisin, L. Durand, N. Karnatak, S. Le Gallet, M. Thomas, et al., Temperature control during Spark Plasma Sintering and application to up-scaling and complex shaping, J. Mater. Process. Technol. 213 (2013) 269–278. https://doi.org/10.1016/J.JMATPROTEC.2012.09.023.
[52] C. Manière, A. Pavia, L. Durand, G. Chevallier, V. Bley, et al., Pulse analysis and electric contact measurements in spark plasma sintering, Electric Power Syst. Res. 127 (2015) 307–313. https://doi.org/10.1016/j.epsr.2015.06.009.
[53] A. Pavia, L. Durand, F. Ajustron, V. Bley, G. Chevallier, et al., Electro-thermal measurements and finite element method simulations of a spark plasma sintering device, J. Mater. Process. Technol. 213 (2013) 1327–1336. https://doi.org/10.1016/j.jmatprotec.2013.02.003.
[54] F.S. Moghanlou, M. Vajdi, M. Sakkaki, S. Azizi, Effect of graphite die geometry on energy consumption during spark plasma sintering of zirconium diboride, Synth. Sinter. 1 (2021) 54–61. https://doi.org/10.53063/synsint.2021.117.
[55] M. Sakkaki, M. Naderi, M. Vajdi, F.S. Moghanlou, A.T. Beris, A simulative approach to obtain higher temperatures during spark plasma sintering of ZrB2 ceramics by geometry optimization, Synth. Sinter. 3 (2023) 248–258. https://doi.org/10.53063/SYNSINT.2023.34178.
[56] M. Le Flem, A. Allemand, S. Urvoy, D. Cédat, C. Rey, Microstructure and thermal conductivity of Mo–TiC cermets processed by hot isostatic pressing, J. Nucl. Mater. 380 (2008) 85–92. https://doi.org/10.1016/j.jnucmat.2008.01.033.
[57] N. Durlu, Titanium carbide based composites for high temperature applications, J. Eur. Ceram. Soc. 19 (1999) 2415–2419. https://doi.org/10.1016/S0955-2219(99)00101-6.
[58] W.S. Williams, The thermal conductivity of metallic ceramics, JOM. 50 (1998) 62–66. https://doi.org/10.1007/s11837-998-0131-y.

Cited By

Crossref Google Scholar
Effects of die geometry and insulation on the energy and electrical parameters analyses of spark plasma sintered TiC ceramics
Submitted
2023-08-15
Published
2024-03-24
How to Cite
Sakkaki, M., Foroutani, M., & Zare, P. (2024). Effects of die geometry and insulation on the energy and electrical parameters analyses of spark plasma sintered TiC ceramics. Synthesis and Sintering, 4(1), 4-16. https://doi.org/10.53063/synsint.2024.41172