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In this paper, the copper-based nanocomposites with TiO2 nanoparticles were synthesized by 
the self-propagating high-temperature synthesis (SHS) process. The effect of the different 
amounts of excess copper, in comparison with the stoichiometric ratio (CuO:Ti ratios of 1:1, 
2:1, and 3:1), on the phase formation of achieved samples was studied. A thermodynamical 
study showed that increasing the excess copper powder reduces the adiabatic temperature, 
which helps the phase formation. The maximum Brinell hardness (89) was obtained for the 
sample with the CuO:Ti ratio of 1:1. Finally, the wear behavior of the synthesized 
nanocomposites was evaluated by the pin on disk test, and the variation of friction coefficient 
and lost weight were measured. The friction coefficient decreased by the formation of phases 
and distribution of titanium oxide particles during the SHS process in the presence of the 
stoichiometric ratio of CuO:Ti. Therefore, the wear behavior was improved. The lowest depth 
of wear trace was measured 0.68 where the ratio of CuO:Ti was 1:1. 
© 2021 The Authors. Published by Synsint Research Group. 
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 Introduction 1.

Tribology which is defined as the science and technology of interacting 
surfaces in relative motions, has attracted increased attention from 
various fields in research [1, 2]. Wear resistance is one of the four 
tribological properties which affect the lifetime of many industrial parts 
and indicates their performance in diverse loading conditions [3, 4]. 
This feature of materials could be improved by two different methods. 
The first method is applying a protective surface coating [5, 6] and    
the second one is synthesizing wear-resistant composites [7, 8].        
For approaching this aim adding diverse elements as reinforcement     
is one of the most common methods [9]. Studies have been conducted 
to investigate the effect of different elements like TiO2 [7, 10], SiC 
[11], Al2O3 [12], etc.  

 
It is worth mentioning that improving the wear resistance of the 
materials with weak surface properties including magnesium [13], 
aluminum [14], titanium [15], and copper [16] attracts more attention 
among researchers. Among these materials, copper-based 
nanocomposites have significant application in automobile, bio, 
energy-saving, steel making, and petrochemical industries due to their 
exclusive properties like high thermal and electrical conductivity, but 
as mentioned before, their application is restricted due to the low wear 
resistance of the surface [17, 18]. Therefore, the wear resistance of 
these materials must be improved to develop and broaden their 
application. Self-propagating high-temperature synthesis known as the 
SHS is one of the simplest, fastest, and economical methods of 
synthesizing different composites. SHS method is based on an 
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exothermic reaction between initial ingredients and it is taken place in 
an adiabatic container. Therefore, the generated heat by chemical 
reaction leads to the reaction in the whole sample. This method has a 
high potential for mass production of metallic nanocomposites [19, 20]. 
In our previous studies, the mechanical and electrical behavior of Cu-
TiO2 nanocomposite produced by mechanical alloying [21] and 
thermochemical routes [22] were studied. Also, the corrosion behavior 
of the SHS produced Cu-TiO2 nanocomposites was studied [23]. In this 
paper, the wear behavior of the SHS-produced Cu-TiO2 
nanocomposites is studied by applying pin on disk wear test and the 
active wear mechanisms were determined by carrying out FE-SEM 
morphology studies. Also, the effect of the excess copper powder than 
the stoichiometric ratio was determined on wear behavior.  

 Experimental 2.

2.1. Preparation for synthesis 

Copper and titanium powders with high purity were used as initial 
components as raw materials for synthesizing the nanocomposite in this 
study. At the first stage, copper powders were oxidized at the furnace at 
400 °C for 3 h by placing in a crucible made of alumina. The achieved 
oxidized copper powders were mixed with titanium powders with the 
stoichiometric ratio. To study the influence of excess copper powders 
on the wear resistance of obtained composite, excess amounts of 
copper with the ratio of 2 and 3 times higher than the stoichiometric 
ratio were combined to the stoichiometric mixture. The coding of the 
samples is presented in Table 1.  
As the next step, and to activate the powders, powders were mixed in a 
ball mill for 5 minutes at 120 rpm and BP ratio of 6:1. 0.1 wt% poly- 
vinyl alcohol (PVA) solution (0.1 mole) and 0.7 wt% of zinc stearate 
(C36H70O4Zn) were added to the mixed powder before the cold press to 
enhance the green strength. Cold pressing was applied under 150 MPa 
pressure in a mold with a diameter of 40 mm and 10 mm in height. 
Afterward, dehydration of the specimens was carried out for 1 hour in 
the oven at 130 °C. The SHS synthesis reactions were carried out 
according to our previous studies [23] and in a stainless-steel 
cylindrical vessel under an argon atmosphere with a pressure of         
0.1 MPa. Ni-Cr electrode was used to initiate the combustion of 
samples and the propagation resulted from the combustion wave 
advanced through the other end of the samples. The electro-discharge 
machine (EDM-AH840-Mah Wire Cut-Isfahan-Iran) was used for the 
final cutting of the samples. Also, the calculation of Gibbs free energy 
was carried out through HSC V6.0 software. 

2.2. Characterization 

Before the SHS synthesis process initiation, a DTA test was carried out 
to determine the temperature of reaction  with  the  DTA  device  model 

Table 1. Coding of SHS synthesized samples. 

Code CuO:Ti ratio 

1CT 1:1 

2CT 2:1 

3CT 3:1 

ETG-60AH with a heating rate of 10 degrees/min. The phase 
composition of specimens was determined by X-ray diffraction (XRD) 
with Cu Kα radiation source (1.5406 A) (Philips 1710 High-
Resolution). After synthesis of nanocomposites, the microstructure of 
samples was revealed using Field Emission Scanning Electron 
Microscopy (FE-SEM-A Vega Tescan) and chemical analysis was 
carried out using X-ray energy dispersive spectroscopy (EDS) spectra 
for microstructure observation. The surface hardness test was applied 
by using Brinell hardness. Pin on disk wear test was applied to study 
the wear behavior of the samples based on ASTM G99. The loss 
weight of the samples after the wear test was measured. The tungsten 
carbide pin with a round surface (diameter: 5 mm) was chosen. The 
applied load was chosen as 10 N, distance 600 meters, and 0.06 m/s. 

 Results and discussion 3.

XRD pattern of the oxidized copper is demonstrated in Fig. 1. It is 
obviously shown that the formation of both copper oxide phases, CuO 
and Cu2O, was occurred, but it is exhibited that the height of the peaks 
belongs to the Cu2O phase are more than peaks related to the CuO 
phase. Peaks at 36, 44, and 63 degrees indicate the formation of the 
Cu2O phase, and peaks at 34, 42 degrees imply the formation of the 
CuO phase. Reactions 1 and 2 show the Gibbs free energy formation of 
these two phases. The XRD pattern (Fig. 1) shows that the peak 
intensity of the Cu2O phase is more than the CuO phase. Despite the 
calculation of free Gibbs energy of Eqs. 1 and 2, where Cu2O (of          
-119.5 kJ) has lower Gibbs free energy formation than CuO (of             
-94.22 kJ), the determined oxide phase is CuO which was obtained 
from the quantitative phase calculation carried out by MAUD software, 
CuO: 34%, Cu2O: 29% and Cu: 37%. Also, peaks at 38, 62, and         
74 degrees indicate the remained un-oxidized copper.  

Cu(s) + 0.5 O2 → CuO(s) ∆G0
673 = -94.22 kJ    (1) 

2 Cu(s) + 0.5 O2 → Cu2O(s) ∆G0
673 = -119.5 kJ    (2) 

DTA diagram of mixed powders copper oxide and titanium is 
presented in Fig. 2. DTA test was carried out to determine the 
temperature of the reactions of Eq. 3 as below:  

2CuO + Ti + xCu = (2+x) Cu + TiO2 + Q     (3) 

4 different peaks are determined in the DTA diagram of Fig. 2 which 
all of them are exothermic. The first peak is demonstrated at 250 °C 
which is related to the oxidation of copper powder and formation of 
Cu2O phase and the second phase at 350 °C which indicates the 
oxidation of copper powder and formation of CuO phase. The third 
peak at 750 °C and the fourth peak at 850 °C in the DTA curve indicate 
the reaction of Cu2O and CuO phases with titanium respectively. 
Therefore, it could be concluded that the temperature of reaction 
triggering is almost between 700 to 800 °C.  

3.1. Synthesized nanocomposites 

SHS process was carried out in the adiabatic container; therefore, by 
calculation of adiabatic temperature, the phase formation could be 
predicted. SHS method is based on exothermic reactions as is shown in 
Eq. 4.  

A + B = C + Q       (4) 
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It is obvious that some heat, Q, was produced during the reaction 
between ingredients. Due to the adiabatic condition, the produced heat 
could be calculated by difference if the standard enthalpy of 
components and adiabatic temperature could be obtained. The diagram 
of the calculated adiabatic temperature versus excess copper powder in 
Eq. 3 is shown in Fig. 3. It is shown when the stoichiometric ratio of 
initial powders including copper oxide and titanium was used; the 
adiabatic temperature reaches 3600 °C. In other words, if the SHS 
process is carried out base on the stoichiometric ratios and without 

excess copper powder, the adiabatic temperature increases up to      
3600 °C. Therefore, generated heat, Q, helps to continue the reaction 
and forwarding the combustion wave both vertical and horizontally and 
obtained a uniform microstructure. It is shown that by increasing the 
amount of excess copper powder, and due to the high thermal 
conductivity feature of copper powder, the adiabatic temperature is 
decreased. Therefore, less heat was available to continue the synthesis 
process and nonuniform nanocomposite could be achieved. The 
formation of the phases was studied in our previous study and the 

Fig. 1. XRD pattern of oxidized copper powder. 

Figure 1 Fig. 2. DTA/TGA diagrams of mixed powders of copper oxide and titanium. 
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formation of the phases including TiO2, TiO, Cu3Ti were detected [23].  
Phase formation of the SHS produced copper titanium oxide 
nanocomposite and the effect of the excess copper were studied in our 
previous study. Uniformity of phase formation is essential to achieve 
homogeneous properties all over the sample. The nature intrinsic of the 
SHS process is to develop the combustion wave of the reaction zone. 
The forwarding of this reaction zone is dependent on the adiabatic 

temperature, powders amounts, and the soundness of the adiabatic 
container. For assuring the uniformity of the phase formation, XRD 
could be taken from different parts (surface and bottom areas) of the 
samples to study the phase formations. Considering the prepared 
synthesized sample, the XRD pattern of the surface and bottom section 
of the sample 1CT was shown in Fig. 4a and 4b. It is obviously seen 
that at the surface area of the sample, the unreacted copper oxide 

Fig. 3. Calculated adiabatic temperature versus the amount of excess copper powder. 

Fig. 4. XRD pattern of a, b) surface and bottom area of sample 1CT, and c) schematic of synthesized sample. 
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remained but at the bulk area, the combustion wave was forwarding 
successfully and the reaction of 3 occurred completely and copper and 
titanium oxide phases were obtained successfully.  
 The hardness of the obtained nanocomposites was evaluated by Brinell 
hardness and the effect of the excess copper was determined. It is 
shown that when the ratio of copper oxide to titanium powder equals 
the stoichiometric ratio, the measured microhardness value equals 89. 
By increasing the CuO:Ti ratio to 2:1 equals 72 and by increasing the 
ratio to 3:1, the hardness value decreased to 54. These values are lower 

than surface hardness which is reported in our previous study [24] for 
Cu-TiB2 nanocomposite equals 105 HV. From the provided FE-SEM 
image and MAP diagrams of distribution of titanium and copper in   
Fig. 5 for synthesized samples, it could be declared that by increasing 
the titanium ratio in the initial mix powder, the distribution of formed 
titanium dioxide particle is reduced too and the microhardness is 
reduced respectively.  
Obviously, there are many factors that influence the wear behavior of 
the diverse parts, including temperature, applied load, surface hardness, 

Fig. 5. FE-SEM and map analysis of titanium and copper powders distribution: a, b, c) sample 3CT, d, e, f) sample 2CT, and g, h, i) sample 1CT. 
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and surface parameters, etc., and the evaluation of the wear behavior 
could be performed during pin on disk wear test. Weight loss, variation 
of the friction coefficient, and variation of the depth of the wear trace 
are three important results that make it possible to compare the wear 
intensity. The wear test results are presented in Fig. 6 as the variation 
of friction coefficient to the wear distance which is known as the 
structure of the transferred layer. The low friction coefficient is one of 
the various aspects of better performance of parts that experience wears 
conditions. It is completely shown in Fig. 6, that the fluctuation of the 
friction coefficient is increased by increasing the amount of excess 

copper powder. The average of the COF measured 0.68±0.01, 
0.70±0.01, and 073±0.01 in samples 1CT, 2CT, and 3CT respectively. 
Therefore, sample 1CT has better wear performance than other 
samples. In samples 3CT and 2CT, due to the presence of excess 
powder, the friction coefficient is higher than sample 1CT in all 600 m, 
but the difference at the initial distances is higher due to the soft 
intrinsic nature of copper powder leads this increase in the average of 
COF. By occurring the wear and formation of copper oxide due to the 
temperature increase at the interface of samples and wear a pin, this 
difference was reduced and as it is could be seen from Fig. 6, after    

Fig. 6. Variation of friction coefficient of worn samples. 
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450 m, the COF diagram overlaps with together more and just the 
range of the fluctuations are differ. Also, the lost weight of the samples 
is measured after the wear test as a symbol of the wear performance. 
The sample 1CT has minimum weight loss equals 0.04±0.01 g in 
comparison to other samples 2CT and 3CT where the lost weights 
equal 0.13±0.01 g and 0.19±0.01 g, respectively.  
Diverse mechanisms have been proposed in the literature for severe 
wear where all of them are involved with plastic deformation, but little 
detail differences change how materials are removed and as a result 
change the active wear mechanism. Therefore, the wear traces of the 
samples were studied by FE-SEM to determine the wear mechanism. 
The FE-SEM images of the wear trace of samples are provided in    
Fig. 7. The delamination could be easily observed in the wear trace of 
samples 2CT and 3CT which are shown by yellow circles. This local 
delamination indicates the plastic deformation which is a sign of 
activation of the adhesive wear mechanism. The mechanism of removal 
of the materials and flakes-like sites is the sign of detachment of 
materials from the contact surface within the wear due to the adhesive 
wear mechanism. This is due to the lower distribution of the 
reinforcement in the copper matrix. On the other hand, FE-SEM image 
in Fig. 7a, no sign of the adhesive wear mechanism could be seen and 
only parallel lines could be detected which implies the abrasive wear. 
These parallel lines indicate the plastic flow at the asperity tips and 
followed by a detachment of wear particles. In these cases, adhesive 
forces are not the only factor for materials removal and other 
parameters like mechanical interaction between two contact surfaces 
must be considered [25].  

 Conclusions 4.

Copper-TiO2 nanocomposite synthesized by self-propagating high-
temperature synthesis (SHS) process and the effect of the excess 
copper in comparison to stoichiometric ratio on the wear resistance of 
samples was studied. Results show that the addition of the excess 
copper reduces the adiabatic temperature and as result, the formation 
and distribution of the phases were not uniform. As a consequence, the 
wear behavior of the synthesized samples is weakened by increasing 

the excess copper powder and the optimized ratio of CuO:Ti is 1:1 for 
the synthesis of Cu-TiO2 nanocomposite through the SHS method, and 
friction coefficient is measured equals 0.68 for this sample. The value 
of the friction coefficient is increased up to 0.7 and 0.73 for samples 
with CuO:Ti ratio of 2:1 and 3:1 respectively.  
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