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A B S T R A C T 
 

KEYWORDS 

MXenes are known as a new type of two-dimensional layered materials that are composed of 
carbide, nitride, or carbonitride of transition metals. In the recent discovery of a new class of 
MXenes, two transition metals occupy the metal site, called double transition metal MXenes 
(DTM). These multilayer composites are of interest due to their attractive features such as high 
ion transport, extensive surface area, and biocompatibility. Some computational methods are 
used to predict the properties and performance of bimetallic carbonitrides. The most important 
feature of this category of materials is the stability and amount of formation energy, which 
directly affects the choice of material in various applications. Density functional theory (DFT) 
calculations are very beneficial to estimate the thermodynamic stability of DTM MXenes. Of 
course, proper surface modification with stable terminals is needed to overcome the limitations 
of DTM MXenes. In this review, the electrochemical, metallic, and magnetic properties of 
DTM MXene have been presented first. In the following, preparation methods are summarized 
according to the latest published findings. Then, various applications including hydrogen 
evolution reactions, anode materials in lithium and sodium batteries, nanomagnetic materials, 
and special applications have been investigated. Finally, more challenges, prospects, and 
suggestions for the development of two-dimensional DTM MXenes have been presented.  
© 2023 The Authors. Published by Synsint Research Group. 
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 Introduction 1.

The two-dimensional structures or single-layer materials have 
significant differences in specific surface area, basic properties, and 
optical output (wavelength, intensity) compared to their counterpart 
solids [1]. 2D crystals such as graphene have received great attention in  

 
material science and engineering at the nanoscale, especially in 
semiconductors [2]. In two-dimensional materials, by reducing the 
thickness of the material even to one atom, major changes can occur in 
their properties [3]. Therefore, extensive studies have been conducted 
on the atomic structures, mechanical properties, behaviors, and defects 
of two-dimensional materials, which are the basis for their practical 
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applications. It is predicted that thousands of crystals can be established 
from various solids by exfoliation, which is classified as two-
dimensional materials [4].  
In 2011, two-dimensional inorganic compounds called MXenes with 
the general formula Mn+1XnTx were found from the family of transition 
metal carbides and nitrides atomically thin layers [5]. In the Mn+1XnTx 
(n=1–3) systems, M is a transition metal and X is either C and/or N, 
terminated with T: –O, –F, –OH, and –Cl or bare. MXenes are 
synthesized through selectively acidic etching of the MAX phases 
(Mn+1AXn, n=1–4), where A is an element of groups IIIA or IVA of the 
periodic table. A is mostly Al or Si in the layered hexagonal structure 
of MAX phases which is eliminated by HF acid [6]. At present, a large 
number of MXenes have been reported such as Ti2CTx, Ti3C2Tx, 
Nb2CTx, Nb4C3Tx, V2CTx, Ta4C3Tx, etc. [7]. While mainly titanium, 
niobium, and vanadium form the structure of MXenes, other metal 
elements such as Sc, Zr, Hf, and Mo are also predicted to form MXenes 
[8, 9]. 
Since MXenes have a high surface area per unit weight and electrical 
conductivity and hydrophilicity are their fundamental properties, they 
have found potential applications, especially in energy storage [10]. 
The ability to adjust the surface terminals of this type of two-
dimensional materials has created a promising future in the preparation 
of thermoelectric devices [11], composites [12], photocatalysts [13], 
sensors, electrodes, batteries [14], nano-magnets, supercapacitors [15], 
and membranes. The semiconductor nature and unique 
physicochemical properties of these compounds have led to their use in 
photocatalysis in order to accelerate redox reactions such as hydrogen 
evolution reactions and other photocatalyst-based usages [16]. 
Moreover, as two-dimensional emerging materials, MXenes have 
potential applications in biomaterials nanomedicine [17], and 
photothermal conversion [18]. 
In the group of MXenes, other solutions have been invented; where two 
transition metals occupy the M positions which differ from their single 
transition metal counterparts [19]. The two intermediate metals are 
distinguished by Mʹ and M" and these semiconductors are divided into 

in-plane and out-of-plane groups (ordered DTM MXenes), and solid-
solution DTM MXenes based on their structure. The behavior of these 
three groups of DTM MXenes is different from single metal MXenes, 
which can have various uses in the future. The purpose of this review is 
to investigate the characteristics, design, and synthesis methods of 
double-transition metal MXenes (DTM) and their hybrids in composite 
configuration with growing applications from electrocatalyst to energy 
storage. 

 Basic properties 2.

MXenes have a high stability because they are synthesized under 
strongly acidic (HF) conditions [20]. It should be noted that the 
stability in bimetallic MXenes depends on the type and content of each 
of the constituent metals. For instance, in Fig. 1, the stability of   
MoxV4-xC3 is shown for different values of x [21]. According to this 
figure, V4C3 is stable throughout the molybdenum-containing region. 
Moreover, MXenes offer a unique combination of metallic conductivity 
and hydrophilicity that have already shown promise as electrodes for 
supercapacitors and Li-S batteries. The developed composites based on 
carbonitride MXenes have high resistance under high-temperature 
oxidation [22]. In this regard, TiCrC with a Ni-Cr additive has been 
investigated. It has been recommended that cladding technology with a 
Ni-P alloy be used to decrease the intensity of the composite oxidation. 
In addition, MXenes have a large surface area and high electron 
mobility, which promises a wide range of applications in the future. 

The results of DFT calculations and experimental methods have shown 
that doubly ordered carbonitrides are thermodynamically more stable 
than solid solution counterparts [8]. The characteristics and properties 
of DTM MXenes are distinguished among existing 2D materials by 
carefully engineering the composition, the number of metal sheets, 
interlayer space, and terminated group functionalities [23]. 
Furthermore, the electronic thermal conductivities of DTM 
carbonitrides revealed by Boltzmann’s transport theory differ with 
single metal MXenes. In one case, the Ti layers have been covered with 
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Fig. 1. Phase diagram for the thermodynamic stability of the different MoxV4-xC3 MXenes. 
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Y atoms in Ti3C2O2 to modify the electronic structure and transport 
characteristics [24]. In addition, TiY2C2O2 MXene has higher electrical 
conductivity compared to Ti2YC2O2 because of its squared band 
velocity. This phenomenon also applies to Sc2YC2O2 and ScY2C2O2, 
whose functional group is –O (Fig. 2). On the other hand, Chang et al. 
[25] calculated the semiconductor properties of ScYCT2 (T: F and OH) 
and bandgap and believe that ScYCF2 and ScYCOH2 are stable and has 
better thermoelectric properties. In another study, Caffrey [26] has 
shown the effect of different types of terminating groups on the 
stability of DTM MXenes. In his research, it was found that Mo2Ti2CTx 
is stable in a wide range of pH in aqueous solution. In contrast, 
Cr2Ti2CTx and Cr2V2CTx are only stable at pH<7 when T is restricted 
to the –F functional group. But in the case of Mo2Sc2CTx, if scandium 
ions interact with F ions in the solution and form ScF3, this MXene 
cannot be stable under acidic pH. In addition, Mo2ScC2 and its 
functionalized congeners meet the criteria of mechanical stability. If 
oxygen is the surface terminal, it can be a suitable option for ultra-
sensitive sensors [27].  
According to a comprehensive evaluation of surface modification, 

Dihingia et al. [28] have found that –O functionalized carbonitrides are 
the most durable systems (Fig. 3). The second stable group is the 
fluorine surface functional class, and MXenes with –OH terminal are 
the least stable types except for the W-based/MoCr2 carbide and nitride 
compounds. It has been experimentally proven that 2D materials have 
almost all the properties observed in bulk materials except magnetic 
behavior [29]. As two-dimensional composites, MXenes have great 
potential to achieve intrinsic magnetism due to their chemical and 
structural diversity [30].  

 Synthesis and design 3.

Since DTM carbonitrides can be pristine or with multiple surface end 
groups, they have many varieties. The type of pair of transition metals 
greatly affects the energy of formation [31]. Geng et al. acknowledged 
that MXene monolayers with oxygen functional groups are easily 
constructed due to low formation energy (Ef), while M2M'C2 with 
boron end groups have the highest formation energy [32]. Most 
M2M'C2 functionalized with N, S, and P have positive or negative 
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Fig. 2. Electrical and thermal conductivities variations of Y2ScC2O2, Sc2YC2O2, Y2TiC2O2, and Ti2YC2O2. 
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formation energy except Mo2VC2N2, Cr2VC2S2, and Cr2MC2N2 with 
top Ti and V configuration (Fig. 4). Alternatively, E-etching 
(electrochemical etching) offers a favorable, practical, fast, and 
environmentally gentle technique for aluminum removal [33]. In the 
following, various synthesis routes of DTM MXenes are summarized.  
In one case, the different elemental molar ratios of Nb:Mo have been 
mixed with a constant molar ratio of Al:C and sintered at high 
temperatures for several hours under argon flow to achieve MAX 
phases [34]. After the successful exfoliation of aluminum layers in 
MAX phases to produce Mo2+θNb2-θC3Tx, two strategies can be used to 
convert MXene layers into flake-shaped monolayers: 1) utilization of 
HF/HCl with delamination agent (LiCl) and 2) solution of 
HF/tetramethylammonium hydroxide (TMAOH). Flake sizes of 
different Mo2+θNb2-θC3Tx synthesized HF/TMAOH are shown in Fig. 5 
with the comparison of the current density of Mo2CTx and Mo1.33CTx 

produced from references [35] and [36]. The Mo2.5Nb1.5C3Tx has the 
highest electrical conductivity even more than bare Mo2Ti2C3Tx, 
indicating some changes in the electronic structure.  
MAX phases contain strong layer bonds that require a strong etch. The 
synthesis of carbonitrides can be achieved through a wet chemical 
method for etching selective layers from their precursor MAX phase at 
RT or above. In the research conducted on the charge transfer 
resistance of Mo2TiC2Tx and Mo2Ti2C3Tx, the wet chemical method has 
been used for synthesis in a Teflon bottle containing HF immersed in 
an oil bath [37]. The etched powder has been stirred, washed, and 
centrifuged to obtain exfoliated MXene. Electron impedance 
spectroscopy (EIS) of Mo2Ti2C3Tx has shown higher charge transfer 
resistance than Mo2TiC2Tx (Fig. 6). Hence it is predicted that 
Mo2TiC2Tx has a rapid kinetic and better catalytic performance for 
HER and OER.  
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The hydrothermal method is one of the most powerful and widely used 
for the production of nanostructures, which has received a lot of 
attention today due to its simplicity and cost-effectiveness [38]. As is 
known from the name of this method, the synthesis based on the 
formation and growth of crystals, takes place in water at a moderate or 
high temperature above RT [39]. Therefore, Ma et al. [40] adopted this 
method in order to deter the destruction of the original layered 
construction of MXene after etching with hydrofluoric acid to prepare 
TiNbC MXene. Hydrothermal pretreatment on TiNbCTx also prevents 
abnormal grain growth by direct calcination in the air. Next, the TiNbC 
suspension is freeze-dried to obtain black powder. The variables in the 
hydrothermal process are the type of water, temperature, time, 
surfactant, and pH, which have key roles in product quality [41]. The 
ratio of Nb to Ti in Ti-Nb carbides significantly influences the 

fabricated composition, but it does not have a direct relationship with 
the stoichiometry of MXene [42]. The TiNbC colloidal precipitate with 
Nb and TiO2 is placed in an insulated container to synthesize Nb-doped 
TiO2/TiNbCO as a new type of composite at high temperatures for 
several hours. In the following, the output solution from the autoclave 
is heated in an oven to get the final powder [43]. The degree of 
oxidation of TiNbC can be tuned by temperature controlling, and the 
oxide nanolayers turn dense with the increase in temperature. The 
strength junctions of TiNbCO and Nb-doped-TiO2 nanosheets are 
ensured through the in-situ partial oxidation [44]. Moreover, the 
components' synergy and electrochemical activity are improved with 
double metal MXene and metal oxide [45]. However, it has been found 
that the electrical conductivity and hardness of the TiNbC composite 
that is combined with SiC significantly increases [46]. To investigate 
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the properties of TiNbC-SiC composite, Fides et al. used the hot 
pressed method for synthesis in two steps without adding sintering 
additives. The results of electrical discharge machining (EDM) of the 
samples indicate the readily machinable composite but severe oxidation 
of the cuttings, which indicates that more surface treatment is needed. 
In another research, Andrade and co-workers [47] synthesized solid 
solution NbyV2-yC by selective etching of niobium and vanadium with a 
controlled ratio, next by oxidation and dissolution in H2O2 and 
recrystallization by hydrothermal process. They demonstrated the 
construction of a solid solution boosted the etching kinetic of MAX 
phases and facilitated the carbide formation compared to pristine V and 
Nb MXenes.  
In another study, Mo2TiAlC2 powder was used in an aqueous 
concentrated hydrofluoric acid to prepare Mo2TiC2Tx MXene [48]. 
After mixing and washing with distilled water, the obtained solution 
was centrifuged to reach the desired acidity (pH=6–7). Next, the water 
in the suspension is completely removed by the freeze-dried method. 
For the exfoliation of Mo2TiC2Tx, (C4H9)4NOH as an organic solvent 
has been used. After stirring for one day, the solution was centrifuged 
and washed with water to eliminate the solvent. The synthesis method 
of Mo2TiC2Tx-molybdenum vacancy (VMo) is an electrochemical 
exfoliation technique in which the deposition of Mo2TiC2Tx on an 
electrode serves as the working electrode. Meanwhile, by creating 
molybdenum vacancies, platinum atoms can be anchored in their place. 
In order to prepare Mo2TiC2Tx-single Pt atoms (PtSA), in-situ 
electrochemical exfoliation and atom trapping strategy have been 
employed in a three-electrode system. The XANES measurement of the 
electronic state of the Pt species in Fig. 7a exhibits higher intensities of 
Mo2TiC2Tx-PtSA compared to Pt foil and PtO2. Fig. 7b shows the 
Fourier transforms of the Pt edge, which indicates Mo2TiC2Tx-PtSA has 
no Pt particles or clusters.  

 Applications 4.

4.1. Hydrogen evolution 

Sustainable producible clean hydrogen is a promising alternative 
energy carrier to replace carbon-based fuels [49]. Hydrogen production 
by water splitting with an electrocatalytic approach can become more 

sustainable after discovering new materials, such as 2D nanomaterials 
[50]. Developing environmentally friendly, low-cost, stable, and highly 
active catalysts for the non-precious hydrogen evolution reaction 
(HER) is one of the critical factors for the hydrogen energy economy 
[51]. Double-transition-metal MXenes (DTM MXenes) have been 
widely pursued in the advancement of renewable energy storage 
technology in recent years [52]. It seems that the Tx terminal groups 
play an effective role in expanding the hydrogen production reaction, 
which is attributed to the interaction of MXene with the reactants and 
the creation of more active sites [10]. However, there is still 
insufficient information on the electrochemical characteristics and 
thermal stability of bimetallic MXenes. Since pure Mʹ2MʺC2 
carbonitrides are surrounded by metal atoms and free electrons, the end 
terminals easily become electronegative during synthesis, which plays 
a significant role in charge transfer for hydrogen evolution reaction 
[10].  
Based on the density functional theory (DFT) calculations of Li et al., 
the performance of mono-metal MXenes is improved by forming a 
sandwich configuration of double-metal MXene [52]. The results of 
their research showed that in terms of hydrogen production, 
carbonitrides made of molybdenum (Mo2MʺC2O2) are more efficient 
than chromium-based MXene (Mʺ: Ti, V, Nb, and Ta). As a result of 
improving the geometric structure, the activity of MXenes promotes 
the direction of the hydrogen evolution reaction. The ∆G energy of H* 
adsorption and hydrogen coverage exhibits an intimate relationship to 
the H2 production of carbonitrides. Through DFT calculations, Zeng 
and colleagues have found 11 candidates superior to platinum among 
64 ordered DTM oxygen-functionalized MXenes for hydrogen 
production [53]. Furthermore, Mo2TiCNO2, Ti2VCNO2, and 
Ti2NbCNO2 have been screened in terms of stability compared to other 
compounds of this group of MXenes. Among these three compounds, 
Ti2NbCNO2 is more capable of catalytic conversion because it has 
abundant catalytic sites in carbon and its ΔG is lower in hydrogen 
absorption. In another research, it has been found the ΔG of H2 
absorption of Mo2TiC2P2 and CrMʹC2S2 (Mʹ: Ti and V) with 
spontaneous conductivity are close to zero, which is a requirement for 
high catalytic activity in hydrogen production [32]. The difference 
between the energy level in the vacuum and the Fermi level is known 
as the work function [54]. In other words, the work function provides 
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an energy barrier against the free space preventing electrons in the 
Fermi level. As seen in the Fig. 8, terminal atoms can affect the 
performance of carbonitrides. Functional group –O shows the highest 
work function in M2M'C2 monolayers, which strongly connect with 
internal electrons.  
By examining the surface functional group, Sun and colleagues [55] 
discovered that DTM MXenes can be made semiconducting. In this 
regard, TiMn2N2–F has a wide range of properties, which has 
encouraged practical studies in wide applications. It has been found 
that TiMn2N2F2 is half-metallic with a large bandgap of ~1.1 eV. In 
another work, O-functionalized DTM carbides have been investigated 
to estimate elastic, and electronic properties by DFT calculations [56]. 
It has been found that the elastic features of Mo-based  C2O2 are 
superior compared to Cr-based counterparts. In addition, the O-
terminated carbides have shown enhanced shear moduli, Young's 
moduli, and elastic constants compared to the unfunctionalized family.  
According to a recent theoretical study by Jin et al. [57], it has been 

determined that the introduction of oxygen vacancies can increase the 
stability of DTM MXenes modified by a mono metal component such 
as Au, Ag, Pt, Zn, Cu, Ni, and Co. The stability of surface atoms added 
to MXenes increases with the introduction of oxygen vacancies, and 
also ΔG of hydrogen adsorption with metal atoms is adjusted. The 
reaction mechanism of H2 desorption changes with the presence of 
metal atoms and removes the obstacles to the activation of hydrogen 
production, which leads to the improvement of the catalytic activity. In 
other research, Zhang et al. [48] have utilized single Pt atoms on 
Mo2TiC2Tx with abundant Mo vacancies to promote the efficiency of 
catalytic hydrogen evolution. Single atoms trap with the molybdenum 
vacancy on MXene nanosheets (NSs) and the kinetics of H2 production 
is similar to hydrogen evolution by commercial Pt-carbon catalyst.  
Fig. 9 shows the polarization curve of Mo2TiC2Tx with platinum 
(counter electrode) in order to produce hydrogen in several cycles. 
Among all samples tested, the Mo2TiC2Tx/Single Pt atom shows the 
highest performance, competing with the Pt-carbon catalyst. In 
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addition, due to the strong covalent interaction between charged 
platinum atoms and the DTM MXene, this compound exhibits high 
stability and prevents material aggregation during H2 evolution. 
Moreover, Pd/Mo2TiC2Tx hybridized with MoS2 is sufficiently active 
for electrocatalytic hydrogen evolution in acidic and alkaline 
electrolytes [58].  
Although MXenes are superior to noble metals in water electrolysis for 
green H2 production, coordinating both hydrogen and oxygen evolution 
reactions (OER) is still a challenge. Therefore, Zahra et al. [37] have 
investigated the dual performance of two types of DTM MXene as an 
electrocatalyst in alkaline media for overall water splitting. In this 
regard, they focused on the synthesis of Mo2TiC2Tx and Mo2Ti2C3Tx 
via the wet chemical method. Mo2TiC2Tx has shown better oxygen 
evolution activity with lower overpotential than Mo2Ti2C3Tx. Another 
molybdenum-based DTM MXene is Mo2+θNb2-θC3Tx (0<θ<0.3) with 
tunable performance for H2 evolution reaction [34]. It is predicted that 
Mo-Nb carbonitrides are stable when niobium ions occupy the inner 
sites according to the Mo-C-Nb-C-Nb-C-Mo arrangements. Among the 
Mo2+θNb2-θC3Tx derivatives for catalytic hydrogen production, 
Mo2.28Nb1.67C3Tx has the lowest excess potential. In another work, ZIF-
67 derived C-N co-doped spongy Co2P heterostructure has been 
anchored on Ti2VC2Tx for electrocatalytic oxygen evolution reactions 
[59]. The coupling of DTM MXenes can improve the conductivity and 
reduce charge transfer resistance. The doped composite has revealed 
excellent efficiency with low overpotential (410 mV @ 200 mA/cm2). 
This strategy and heterostructure engineering could develop on 
electrocatalytic water splitting. 
According to Jin and colleagues' study [60] on 24 double-transition 
metal carbides including M2M'C2Tx and M2M2'C3Tx, it is predicted that 
18 MXenes are active electrocatalysts to HER. In particular, Nb2Ta2C3, 
Ti2Mx'Cy, and Mo2Mx'Cy with O-termination are the most stable 
carbides under standard conditions, while O- and OH-terminated 
V2M2"C3 and Cr2Mx"Cy are the most stable carbides. As a guide 
remark, the more fragile the M–O bonds of carbides, the stronger the 
bond between the adsorbed hydrogen and the terminal -O group. 
Furthermore, Geng et al. [32] have found that ∆GH values of 
M2M"C2Tx (T: O and N) monolayers are very negative and also hold 
very low exchange current. The weak interaction in S–Cr2TiC2, S–
Cr2VC2, and P–Mo2TiC2 boosts the H2 release and causes to very 
increased exchange current which is useful for H2 evolution reaction. 

4.2. Batteries 

For the first time, Mashtalir et al. [61] used MXenes as anodes in 
lithium batteries and found their excellent charging capacity. The 
electrochemical intercalations of lithium between carbonitride 
nanosheets conduct 2D MXenes as favorable solids to construct anodes 
in Li-ion batteries and capacitors. Not long after, the performance of 
Ti3C2Tx MXene in energy storage was successfully extended by 
lithium/sodium [62]. However, the limited practical capacity and the 
tendency of MXenes to accumulate during the electrochemical cycle 
reduce the efficiency of lithium batteries [63]. DTM carbonitrides are 
admiringly suitable as an anode in batteries because of their excellent 
capacity in comparison with conventional single-metal carbonitrides.  
Based on the stability of DTM MXenes, MoWC, and MoWCO2 have 
been chosen by Zhou et al. as the anode in the Na battery in order to 
store energy [64]. Because the distinct radii of the metal atoms lead to 
the crystalline lattice of ordered DTM carbonitrides [8], MXenes with 

excellent properties are formed based on surface engineering, which is 
suitable for electrode preparation. The molybdenum and tungsten have 
different radii that could synthesize ordered W–C–Mo MXenes in a 
large area. The synergy of Mo and W leads to the high capacity of this 
type of MXenes, and the oxygen functional group does not change it. 
According to a previous study on W2C MXene [65], more electrons 
gathered on the surface of MoWC which leads to a high charge state. It 
should be mentioned that there are very small diffusion barriers in 
sodium batteries like lithium batteries [66], which is incompatible with 
diffusion barriers in Mo2C [67] and W2C [65] monolayers. In addition, 
MoWC monolayers have a high specific capacity of about 670 mAh/g 
as anode materials for lithium batteries [66]. Moreover, WCrC and 
WCrCO2 with superior dynamical stability are known as ideal anode 
materials with ignoble diffusion barriers for the development of 
sodium-ion batteries [68]. 
In theoretical research, Li et al. [69] studied the terminated functional 
group effect on the TiNbC behavior. They found that the –OH group 
destabilizes TiNbC(OH)2 although it has metallic conductivity. 
Furthermore, fluorine groups make TiNbCT2 undesirable as an anode 
material because of the forming of lithium-ion rings. In particular, 
TiNbC and TiNbCO2 MXenes show distinctive features such as very 
low lithium diffusion barriers, theoretical storage capacity, and 
moderate absorption energy comparable to Ti2C [70] and Nb2C [71] 
monolayers, which manifests bimetallic TiNbC and TiNbCO2 are 
suitable for Li-ion batteries with capacity of 350 and 290 mAhg-1, 
respectively. In another research, it has been determined that TiNbC 
and TiNbCO2 have a higher ability than Nb2C-based single-transition 
metal MXenes to absorb sodium atoms in a Na-ion battery, which is 
attributed to the synergistic effect of titanium and niobium, which 
causes the interaction between the substrate and sodium [72]. In 
another work, Liu and coworkers [73] have successfully fabricated 
Ti2NbC2Tx as a double transition metal MXene with enlarged interlayer 
spacing. This anodic material provides fast charge transfer and ion 
diffusion with a fine capacity of 196 mAh/g which is quite stable 
during more than 400 cycles.  
Previously, the hybridization of single metal MXenes with metallic 
oxide has been investigated for energy storage in batteries [74]. 
Therefore, the bimetallic MXenes composite based on metal oxide has 
been considered. In the studies of Dai et al., (Ti0.9Nb0.1)3C2 has shown a 
specific capacity of 280 mAh/g at a current density of 0.1 A/g and 
retains 91.5% of its capacity after 2000 cycles [75]. Hence, the Nb-
TiO2/(Ti0.9Nb0.1)3C2 nanohybrid architecture through an annealing 
approach leads to a high-performance and stable anode material due to 
reversible and fast Li ions diffusion and storage with Nb-TiO2 support. 
As mentioned, to overcome the unstable structure and limited capacity 
of 2D MXene, Niobium-doped TiO2 can be a good choice for anode 
materials in batteries [40]. In this regard, Nb-doped TiO2/TiNbC 
nanolayers prevent structural collapse and reassembly during charge 
and discharge and promote space Li ions transportation. However, 
compared to Nb-TiO2/(Ti0.9Nb0.1)3C2, it has shown a lower reversible 
performance (260 mAh/g) after 500 cycles. Although TiO2 is the most 
widely used semiconductor for the fabrication of hybrid anodic 
materials, Xu et al. [76] have chosen VNbO5 metallic oxide over 
VNbCTx. The specific capacity of VNbO5/VNbCTx is greatly improved 
compared to V2O5 for energy storage in lithium batteries (400 mAh/g> 
294 mAh/g). At the same time, other researchers have made a novel 
211-phase VNbCTx by selectively etching the aluminum layer of 
VNbAlC, which shows a specific capacity of 520 mAh/g with  hopeful  
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cycle stability and high rate capability in Li batteries as shown in     
Fig. 10 [77]. The superior performance is related to the multilayer 
skeleton of VNbCTx MXene which can prevent the restacking of mono 
metal MXene nanosheets. In addition to VNbO5, TiNbOx is also 
hybridized as a mixed metal oxide with carbides to obtain a 
combination with versatile structural and electrochemical properties. 
For example, Husmann and coworkers [42] have designed and 
prepared a TiNb-based carbide/TiNbOx hybrid via thermal oxidation in 
CO2 to test as a Li-ion battery electrode. The TiNbOx/TiNbC presented 
a high 226 mAh/g capacity at 10 mA/g and 75% retention after       
1000 cycles at 1 A/g with Nb/Ti: 5 in derived TiNbOx.  
Previously, ordered and functionalized TiVC has been investigated 
through density functional theory calculations and is a candidate anode 
material for Li-ion batteries [78]. Although all the samples have high 
electronic conductivity and show metallic characteristics, TiVCT2 
functionalized with the sulfur group has shown the lowest barrier to the 
diffusion of a Li-ion. In addition, in the charge/discharge process, the 
formation of alkali metal dendrites is prevented by the range of open 
circuit voltage of lithium ions (0.0–1.0 V) with monolayers of pristine 
TiVC and TiVCS2. In another work, both ordered and solid-solution 
structures of TiVC and TiVCT2 have been analyzed as lithium-ion 
anode materials [79]. In comparison, ordered and solid types of TiVC 
exhibited excellent adsorptive properties, and the lowest diffusion 
barriers belong to two different sides of ordered TiVC with the highest 
theoretical capacity ~480 mAh/g. It is noteworthy that the decreasing 
trend of TiVC capacity has been observed when it is functionalized 
with –O, –F, and –OH, respectively. Furthermore, functionalized 
TiVCTx blended V2O5 and TiO2 as anode material boosts the Li-ion 
batteries' performance to 331 mAh/g [80]. In another study, a 3D 
TiVCTx/poly-o-phenylenediamine composite has been proposed as a 
chemical and electrochemical stable electrode material in Li-ion 
batteries [81]. This tremella-like architecture composite has exhibited 
outstanding properties with a capacity of up to 224 mAh/g at 2 A/g. 
Compared to the V4C3Tx/poly-o-phenylenediamine with a capacity of 
561 mAh/g at 0.1 A/g [82], the blend of MXenes and conductive 
polymers is recommended as electrode material. In addition, the TiO2-
based heterostructure of TiVCTx is a promising strategy for high-
performance anode materials [83]. Ti atoms of Ti2−yVyCTx could be 
selectively oxidized on titania particles while V atoms maintain the 
two-dimensional lamella structure with elevated electronic 
conductivity. The calculated capacitance contribution is 64% when the 
scan speed reaches 1 mV/s (Fig. 11). This indicates that the quasi-
capacitor control contribution to the total capacity is dominant, which 
is associated with fast Li+ storage and superior rate performance.  
According to the theory of Tan and coworkers [84], the molybdenum 
atom prefers to occupy the surface layer in (M1-xMox)3C2 (where M is 
Nb, V, Ti, or Ta) and based on Monte Carlo simulation, the ordering 
continues up to the above temperature. In this regard, Huang and 
collogues [85] have shown that TiMoC monolayers have low Li-ion 
diffusion barriers on the titanium surface. Moreover, if chromium is 
substituted for molybdenum and the concentration of lithium is 
increased to 2, the theoretical capacity will be 480 mAh/g. In addition, 
TiCrCO2 displayed a somewhat elevated theoretical capacity of ~370 
mAh/g. Therefore, TiCrC, TiMoC, and TiCrCO2 monolayers can be 
good candidates for the anode material in lithium batteries. 
Fundamentally, the surface terminations influence the Li-ion 
adsorption and the theoretical capacity of Mo-based MXenes [86]. 
Except for –O and –H terminations, it is predicted fast 
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charging/discharging process and low barriers of lithium ions       
(~0.04 eV) for Mo-based MXenes including V, Ti, and Sc.  
The main obstacle to large-scale energy storage and conversion 
systems is the lack of cost-effective, stable, and efficient catalysts. In 
this regard, NbTaC, VTaC, and VNbC have been designed as double 
transition metal MXenes with a functionalized terminal to increase 
anode performance in Na ions batteries [87]. Compared to the single 
metal counterpart, the Na+ absorption capacity of NbTaC, VTaC, and 
VNbC enhances to 75, 37, and 75%, respectively. These composites 
not only have low initial migration barriers with sodium atoms, but also 
have high theoretical capacity (NbTaC: 328, VTaC: 302, and VNbC: 
602 mAh/g). In another study, (NbyV2–y)CTx solid-solution MXene has 
been explored for energy storage in Li-ion batteries [47]. In lithium-ion 
batteries, the electrochemical cycling of NbyV2–yC-derived oxides 
displayed differing behaviors to V2C anodes [88].  
Of course, single and double layers of nitride-based transition metal 
containing vanadium and chromium have a bright future in lithium-ion 
batteries. For example, V2N and VCrN monolayers have a low energy 
diffusion barrier of 0.034 and 0.03 eV in Li-ion batteries, respectively 
[89]. Adsorption of Li-ion multilayers on the upper and lower 
V2N/CrVN surfaces results in a specific capacity of           
1440.0/1040.0 mAh/g. Further, both mentioned MXenes are thermally 
stable at 27 and 227 °C. In addition, thallium in DTM Ti-based 
MXenes has been used as a Li-ion host anode with a remarkable 
capacity of 460 mAh/g and kept efficiency of around 99% after           
200 cycles [90] The great Li-ion storage of the bimetallic TixTa(4−x)C3Tx 
could be correlated to the formation of a stable bi-metallic MXene 
structure, which stores Li-ions on the surface of its layers during the 
redox reaction. The TixTa(4−x)C3Tx demonstrated good electronic 
conductivity between the active materials, carbon additive, and binder, 
showing good electrochemical properties, remarkable capacity, and 
great capability [91]. 

4.3. Magnetic nanodevices 

Double transition metal MXenes have semi-metallic properties and 
intrinsic magnetism that can be used in magnetic and spintronic 

devices. MXenes research is rapidly evolving to on the application in 
magnetic devices [92]. Magnetic tunnel junctions called spintronics as 
nanostructured tools consist of two layers of magnetic metal separated 
by an ultrathin layer of insulator [93]. These implements are used in the 
fabrication of magnetic sensors, hard disk drives, magnetic random 
access memories, etc. [94]. 
Recently, Cui et al. [95] have employed ScCr2C2F2 as the spin-filter 
tunnel barrier to achieve excellent spin-filtering in the van der Waals 
magnetic tunnel junction. It has been observed that the ScCr2C2F2 
monolayers can preserve half-metallicity with good polarization after 
utilization in magnetic devices. Other Cr-based MXenes, emerging 
Mo2CrN2O2 and W2CrN2O2 with varying metallic behaviors and robust 
ferromagnetism have great potential in electronic devices and nano-
spintronics [28]. The direct bandgap of Mo2CrN2O2 and W2CrN2O2 are 
0.77 and 1.35 eV opening up an optimistic future in the preparation of 
new 2D materials with adjustable magnetic features. It is notable that 
the bandgap of semiconductors can be predicted using density 
functional theory (typical errors are <0.1 eV) [96]. 
A wide group of ordered DTM MXenes such as Ti-V, Ti-Cr, and Ti-
Mn with central Ti layers and various terminal groups have been 
explored by Sun et al. [55]. It has been found that F-terminated 
TiMn2N2 has a unique wide bandgap of up to 1.0 eV while the 
unfunctionalized TiMn2N2 remains metallic. Therefore, by using wide 
combinations of bimetallic MXenes, new magnetic, semi-metallic, or 
insulating behaviors can be achieved with or without surface 
terminations. Moreover, the magnetic and electronic properties of 
functionalized M2M’C2Tx MXenes (T: S, P, O, N, and B) have been 
investigated by DFT for use in nanodevices [32]. Based on the stability, 
a set of DTM MXenes has been screened including Cr2VC2Tx, 
Cr2TiC2Tx, and Mo2VC2Tx (T: S, O, and N), which are spontaneously 
conductive. The magnetic moments of Cr2M’C2Tx (M: V and Ti, T: S, 
O, and N) are mainly contributed by Cr atoms. Differently, S–Cr2M’C2 
(M’: Ti and V) monolayers are antiferromagnetic, while Mo2VC2Tx   
(T: S, O, and N) maintain ferromagnetism at ground state with 
magnetic moment localized on vanadium. These functionalized DTM 
carbonitrides are favorable composites for magnetic nanodevices. 
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In another work, Ti2MnC2T2 monolayers have been introduced as 
strong ferromagnetism regardless of surface terminations (T: F, OH, 
and O) for nanoscale spintronic applications [97]. Both O-terminated 
Hf2VC2 and Hf2MnC2 MXenes as 2D robust ferromagnetic materials 
have high magnetic moments as well as great Curie temperatures based 
on electron filling in transition-metal cations. Furthermore, 
Hantanasirisakul et al. [98] have reported comprehensive studies on 
magnetic as well as electronic properties of TiCr2C2Tx MXene for 
potential spintronic applications. It has been found that a magnetic 
transition is present in TiCr2C2Tx @ around 30 K, which does not exist 
in its bulk-nanolayered counterpart (TiCr2AlC2). Besides the Cr cation, 
the magnetic behavior of the Nb-based 2D MXenes can be observed 
[99]. For instance, the magnetization of solid solution (Nb1–xTix)4C3 
MXene emerges driven by Ti atoms on the surfaces. In addition, the 
magnetic features of the mentioned MXene are preserved upon the 
surface functionalization by OH or F groups. In addition to carbide 
MXenes, the nitride family has also been proposed for use in electronic 
devices. WSi2N4 and MoSi2N4, emerging 2D semiconductors, have 
practical potential for designing energy-efficient and high-performance 
composites [100, 101].  

4.4. Antibacterial 

Most of the applications of composites are focused on energy 
production [102]. Recently, 2D MXenes have been used in biomedical 
scopes and antibacterial due to their great bio-compatibility and photo-
thermal properties. [103]. To overcome bacterial infections and 
antibiotic resistance, TiVCTX monolayers have been synthesized and 
demonstrated their dual-functional antibacterial ability [104]. The Ti-V 
MXene has exhibited a usual lamellar structure and it also 
demonstrated above 99.8% antibacterial ability against B. subtilis and 
E. coli after exposure to low-dose carbide. In addition, the 
photothermal effect of Ti-V carbide has been examined by NIR laser. 
Such a double metal MXene showed a stable temperature under 3 times 
on and off irradiation cycle (Fig. 12), indicating outstanding 
photothermal stability of TiVCTX.  

4.5. Chemical synthesis  

One of the crises of the last century is providing affordable 
energy from renewable sources [105]. Hydrogenation of CO and 
CO2 on metal carbide or nitride-based composites is growing as 
a two-dimensional platform as a substitute for noble metal 
catalysts to achieve green fuels via various processes [106]. In 
this regard, Mo, W carbide, and nitride have been used by 
Patterson et al. [107] as single metal MXene for the Fischer–
Tropsch reaction to produce methane as hydrocarbon products 
in a stirred reactor. Other monometallic MXenes families such 
as TiC [108] and Nb2C [109] have been used to reduce CO2 and 
methanol production. It has been proven that the lack of 
functional groups on the surface of molybdenum carbide has a 
positive effect on the selectivity and activity of MXene [110]. 
This conclusion cannot be taken in the case of DTM MXenes 
because the properties and behavior of the bimetallic species are 
very different. Recently, Wu and his colleagues [111] have 
effort to reduce the greenhouse gas CO2 by Ru-Mo2TiC2 as a 
prominent sunlight absorber with a rate of 4 mol/gRu.h CO 
production which is 2.5 and 80 times higher than Ru clusters 
and Ru/SiO2. Mo-based nitrides have also high potential to be a 

good composite in the field of photocatalysis [112]. For 
example, MoSi2N4 hybridized with MoSiGeN4 has been 
suggested for photocatalytic CO2 reduction due to the suitable 
bandgap of energy. 
The commercial conversion of N2 to urea by CO2 through the Wöhler 
synthesis [113] is used to promote energy and environmental strategies. 
Global urea and ammonia production account above 2% of the world’s 
energy consumption. Therefore, it is necessary to produce urea with 
high-performance electrocatalysts under moderate conditions. 
However, the common process suffers from many technical bottlenecks 
to proceed under mild conditions. In new research, for the first time, 
Yang and co-workers [114] designed Mo2VC2 DTM carbide as a 
promising electrocatalyst for urea synthesis. Although Mo2VC2 has a 
lower potential than the Cu-Pd catalyst [115], it has opened a bright 
horizon for nitrogen-to-urea conversion.  
Improving the Haber–Bosch process for NH3 generation via N2 
reduction can reduce greenhouse gas emissions [116]. DFT calculations 
can screen the effective metal atoms as supporting defective 
Mo2TiC2O2 nanosheets, which significantly promote the N2 reduction 
reactions. Recently, doping of Mo2TiC2O2 with Zr single atoms has 
been explored for nitrogen reduction at ambient conditions [117]. The 
formation energy of Zr-doped Mo2TiC2O2 is more negative than 
synthesized Pt-doped Mo2TiC2O2, which indicates the readiness of this 
composite to be a good candidate for N2 conversion. It should be noted 
that in the process of nitrogen reduction, the lowest barrier of the 
potential determination stage is reported to be 0.15 eV. It has been 
proved that N2 molecules could intensely adsorb on DTM carbides and 
activate for NH3 production. Another DTM MXene candidate is 
Mo2Nb2C3 with a low overpotential of 0.48 V [118]. Among the 18 
MXenes shown in Fig. 13, Mo2Nb2C3 has the lowest reaction-free 
energy of the potential determining step (∆GPDS). Molybdenum 
molecules can control the electrons required for the reaction and 
increase the activity of the N2 fixation. Combining DFT calculations 
and Monte Carlo simulation, Fang and his coworkers [119] have 
introduced 5 potential DTM MXenes consisting of V-Mo, Nb-Cr, Mo-
Mn, and Mo-W for N2 reduction reaction. 
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4.6. Sensors and biosensors  

The chemical composition and layered structure, and high 
conductivity of MXenes have made them attractive for the 
application and development of sensors and biosensors [120]. In 
addition, 2D MXenes display suitable bandgap, lower current 
leakage and low diffusion barriers, thereby improving detection 
sensitivity [121]. Therefore, gas sensors based on MXenes, 
electrochemical and optical biosensors have been studied and 
researched. In one case, 2D MoSi2N4 monolayers have been 
studied as sensors for, SO2, NO, NO2, and O2 detection [122]. It 
has been found that the surface of MoSi2N4 acts as a charge 
acceptor or donor and all molecules are physically adsorbed on 
the surface by small charge transfer. With the physisorbtion of 
gas molecules, the semiconducting property of MoSi2N4 does 
not change and the bandgap distance decreases from 1.79 to 
1.50 eV. Later, sensing of sulfur-containing gases (SO2 and 
H2S) on M2TiC2Tx (M: Cr, Mo; Tx: O, OH, S) layers have been 
investigated by means of DFT calculation [123]. The 
physisorbtion of SO2 is stronger on S-terminated Mo2TiC2 and 
Cr2TiC2, whereas H2S has higher adsorption on O-
functionalized Mo2TiC2 and Cr2TiC2 (Fig. 14a). The isobaric 
surface coverage of SO2 and H2S vs. temperature is shown in 
Fig. 14b. As can be clearly seen in the figure, Cr2TiC2O2 and 
MoTiC2O2 are able to detect toxic gases containing very dilute 

sulfur. In another research, Xu et al. [124] investigated the 
effect of noble metals absorbed on MoSi2N4 in the field of gas 
sensor construction and nitrogen oxide removal. They found 
that Au-based MoSi2N4 is suitable for sensing O2, CO, and SO2 
gas molecules, while Pd-based MoSi2N4 is more capable of 
detecting NO2, NO, and N2 gases, and Ag-based MoSi2N4 is 
only useful for SO2 sensing. Furthermore, the introduction of Pd 
atoms on MoSi2N4 increases the photocatalytic ability of NO 
removal and prevents the disposal of the toxic NO2 product 
because the noble metal atoms reduce the bandgap and improve 
the ability to absorb light. For the first time, Linghu et al. [125] 
have proposed Cu-MoSi2N4 monolayers for the adsorption of 
NH3 molecules. The process performance has been analyzed via 
both non-equilibrium Green's function and DFT. The results of 
electronic transport calculations have shown that although this 
composite is sensitive to NH3, CO, NO, and NO2 gases, it only 
moderately adsorbs NH3 at RT. 
In a recent study, SnS2 and Mo2TiC2 quantum dots (QDs) have been 
designed for a novel electrochemiluminescence biosensor to detect 
gastric cancer [126]. MoTi-MXene quantum dots have a substantial 
contribution to the luminescence procedure due to their stability and 
light processing [127]. SnS2 nanolayers also increase the brightness 
intensity of MXenes quantum dots due to their large surface area and 
low dielectric constant [128, 129]. Therefore, SnS2/Mo2TiC2 QDs is a 
good candidate for biosensor application. 
 

*N≡N *N=NH 
  │  │ 

*N–NH2 *N 
  │     

*NH=NH 
  │     │ 

*NH–NH 
  │     │ 

*NH2–NH2 
  │      │ 

*NH 
  │   

*NH2 
  │       

*NH3 
  │   

NH3 

NH3 

NH3 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

∆G
PD

S (
eV

) 

0.74 
0.65 

0.76 

0.47 0.50 

0.43 

0.57 0.56 
0.50 0.51 0.53 0.52 

0.54 

0.43 

0.50 
0.48 

0.60 

*NH   →  *NH2 *N–N   →  *N–NH *NH2   →  *NH3 

Fig. 13. ΔGPDS for some type of DTM MXenes (color codes represent the corresponding PDS of each step). ΔGPDS for all DTM carbides are 
below 0.8 eV. 

Distal 

Alternating 

Mixed 1 

Mixed 2 

Mixed 3 



A. Akhoondi et al.                                                                                                        SYNTHESIS AND SINTERING 3 (2023) 107–123                                                                                                                                    119 
 

 

 Conclusions 5.

The selection of metals with a useful hybrid effect has opened new 
ways for potential applications with desirable properties in the MXenes 
family. However, the low investigation of physical, mechanical, and 
electronic characteristics has limited their practical application. The 
behavior of DTM MXenes is different from single metal MXenes, 
which can have various uses in the future. This group of two-
dimensional materials has greatly helped in designing nanomaterials 
and meeting new needs. Knowing the electrochemical, metallic, and 
semiconducting properties of DTM MXenes can ultimately lead to 
understanding their performance in various applications. 
Thermodynamic stability is the very first property of the DTM MXenes 
which is discussed with the role of terminal groups. Most of the 
MXenes studied have shown metallic properties, thus providing 
superior charge transport. However, the synthesis of DTM MXenes as 
newly interesting discovered materials still requires more theoretical 
and experimental knowledge about characteristics and capabilities.  
These results indicate the wide application of bimetallic MXenes from 
the electrocatalytic production of hydrogen to the anode material in 
batteries and electronic devices, etc. Various methods have been 
proposed for the synthesis and preparation of MXenes. Furthermore, 
the development of new applications is provided with the possibility of 
structural modification. 
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