Influence of TiN addition on densification behavior and mechanical properties of ZrB2 ceramics

Alian Shima a,*, Masoud Kazemi b

a Department of Aeronautical Engineering, University of Kyrenia, Kyrenia, Cyprus
b Ceramic Department, Materials and Energy Research Center (MERC), Karaj, Iran

ABSTRACT

In the present work, densification behavior and mechanical features (fracture toughness and Vickers hardness) of undoped and TiN-doped ZrB2 ceramic materials, hot-pressed at 1800 ºC under 15 MPa for 1 hr, were studied. The addition of only 5 wt% TiN into ZrB2 has resulted in an increase in its relative density from 83% to 90%. Removal of oxide contaminations like B2O3 via chemical reactions with TiN and new secondary phases formation such as ZrN, h-BN, and (Zr,Ti)B2 solid solutions were approved employing crystalline phase analysis and microstructural studies. Improvement of densification and restriction of grain growth caused enhancement of mechanical characteristics. The measured values of Vickers hardness and fracture toughness are ameliorated from 7.8 GPa and 1.5 MPa.m 1/2 to 14.1 GPa and 3.8 MPa.m1/2, respectively.

© 2023 The Authors. Published by Synsint Research Group.

1. Introduction

As a member of ultra-high temperature ceramic (UHTC), zirconium diboride has gained the researchers' interest owing to its high melting temperature and excellent accumulation of features including low thermal expansion coefficient, chemical inertness, electrical conductivity, and high hardness [1-3]. Its relatively low density along with aforesaid characteristics has made ZrB2 an appropriate candidate for potential usages commonly in re-entry vehicles and aerospace industries. However, the applicability of this material has been challenged because of poor sinterability caused by its strong covalent bonds and low self-diffusion coefficient [1, 4, 5]. Hence, applying high pressures and elevated temperatures is necessary to obtain a fully dense ZrB2 sample, which encourages the growth of grains and results in a significant decline in fracture toughness. To overcome such problems, several research works have suggested the selection of suitable consolidation techniques and/or activating the toughening and sintering mechanisms utilizing the addition of additives [6-8]. Among spark plasma sintering (SPS), pressureless sintering (PS), reactive hot pressing (RHP), and hot pressing (HP) [9, 10], as the sintering techniques for the fabrication of UHTCs, the first one is a newly developed route that utilizes direct current pulsing and external mechanical pressure to densify the materials synchronously [11-13]. According to the role of additives/reinforcements, both metals and non-metals can be utilized as the sintering aid to prevail over mentioned shortcomings of ZrB2 and improve its properties. Additives like Mo [14], V [15], Cr, Fe [16], Al [17], Ni [18], Nb [19], and Ti [20] are the typical metallic component used in ZrB2-based ceramics that can form liquid phase during the densification process and ameliorate the sinterability.

Several non-metallic sintering additives incorporated to ZrB2 materials to remove the oxide dirt from the particles’ surface through chemical reactions and improve the densification are carbides, carbon allotropes, boride, and nitrides. Aside from borides and carbidies, the influence of refractory nitrides HfN [21], ZrN [22], Si3N4 [23, 24], BN [25-30], TiN [31], and AlN [32, 33] on the mechanical properties, the densification promotion, and microstructural evolution of sintered UHTCs have newly been investigated as sintering aids or reinforcements in
ZrB$_2$-based materials. Sinterability and densification of ZrB$_2$-SiC composites are enhanced by adding the appropriate amount of AlN leading to liquid phase formation, which fills the porosities and voids in microstructure [32, 33]. Surface oxide contaminations on the ZrB$_2$ particles are purged by adding BN additive through the chemical reaction between BN and ZrO$_2$ and subsequently thermal shock resistance, sinterability, machinability, and flexural strength are improved [25, 26]. Fully dense ZrB$_2$–SiC ceramic composites are hot pressed by adding 3 vol% HfN or 4.5 vol% ZrN owing to liquid phase formation [31]. Another nitride component used as a sintering aid to promote sinterability and develop the microstructure of ZrB$_2$ is Si$_3$N$_4$, which can form nano-platelet boron nitride and borosilicate amorphous phase at the grain boundaries [24]. This nitride also affects the mechanical behavior and sinterability of TiB$_2$ manufactured by hot-pressing because of cleaning the surface oxide contaminations leading to the formation of SiO$_2$, BN, and TiN [34, 35]. However, in addition to mentioned synthesized phases, TiC and B$_4$C were also formed as the in-situ secondary phases in the SPSed TiB$_2$–SiC ceramic composite [36, 37]. The introduction of enough content of AlN encourages the mechanical behavior and sinterability of TiB$_2$ manufactured by hot-pressing.

Using TiN additive is reported in TiB$_2$-based ceramic, resulting in the fabrication of a nearly fully dense sample [31]. The introduction of TiN in TiB$_2$–SiC composite resulted in the fabrication of fully dense material, including TiC, nano-layered BN, B$_4$C, and TiSi via the spark plasma sintering [39]. (Zr,Ti)B$_2$–(Zr,Ti)N ceramic composite is fabricated due to the in-situ synthesis and penetration of ZrN and TiB$_2$ as the result of TiN addition to the ZrB$_2$ ceramic and their chemical reactions during the spark plasma sintering [40]. The Appearance of in-situ synthesized h-BN, the solid solution of (Zr,Ti)B$_2$, and ZrN as well as ZrO$_2$ was proved in TiN-doped ZrB$_2$–SiC leading to mechanical properties improvement [41].

In the present work, the pure ZrB$_2$ and the ZrB$_2$-5 wt% TiN ceramic materials were fabricated utilizing the hot-pressing method at 1800 °C under an external pressure of 15 MPa for the holding time of 60 min to peruse the influence of TiN sintering additive on the sinterability, microstructure, and mechanical characteristics of ZrB$_2$ UHTC.

2. Experimental procedure

2.1. Materials and methods

Commercially as-purchased ZrB$_2$ and TiN powder were employed as the initial materials in the present work. The more important characteristics of these initial powders have been illustrated in Table 1. 5 wt% TiN was weighted and added into a certain amount of ZrB$_2$ to produce a ZT powder mixture. After that, the specified amount of ZrB$_2$ (Z) powder and ZT powder mixture as the precursors were homogenized employing an ultrasonic bath for 20 min in the ethanol. Then, the obtained slurries were ball-mixed for 1 hr at 80 rpm. Next, blended slurries were dried up by holding them in a rotary oven (HMS 14, Tebazma, Iran) at 110 °C for 180 min. The desiccated powder mixtures were ground using a pestle and an agate pounder, then sieved to prevent their agglomeration (100-mesh). Eventually, each prepared powder mixture was poured into a graphite mold with an inner radius of 1.5 cm covered by flexible graphite foil to decrease the probability of chemical reaction among the die and powders. The sintering process was carried out at 1800 °C for 60 min under a load of 15 MPa in vacuum condition using hot pressing apparatus (Shenyang Weitai Science & Technology Development Co., Ltd., Shenyang China).

2.2. Characterization

The bulk density of as-sintered specimens was measured utilizing the Archimedes method with distilled water as the immersing medium. Theoretical density was evaluated by rule-of-mixture. In order to attain the relative densities, the ratio of the measured bulk densities to the calculated theoretical ones was estimated. Field-emission scanning electron microscopy (FE-SEM: Mira3 Tescan, Czech Republic) and energy-dispersive X-ray spectroscopy (EDS) were simultaneously utilized to investigate the microstructure and chemical composition of as-sintered specimens. Identification of crystalline phases was performed using X-ray diffraction (XRD: Philips PW1730). Indents were created on the polished surface of as-sintered samples by applying a force of 49 N for 15 s and a mean Vickers hardness (H_v) was determined. Indentation fracture toughness (K_{IC}) of samples was diagnosed from the measurement of mean cracks length, based on the Anstis equation [42]:

$$K_{IC} = 0.016 \left(\frac{P}{C^{1/2} H_v^{3/2}} \right)$$

where C, E, H_v, and P are the average half-length of the radial cracks, Young’s modulus (specified by the rule of mixtures), Vickers hardness, and applied indentation load, respectively.

3. Results and discussion

The microstructure of the polished surface of as-sintered Z and ZT samples is displayed in Fig. 1. These micrographs display the good harmony of microstructure and the obtained relative densities of Z and ZT. Relative densities of 83% and 90% were achieved for Z and ZT samples after hot pressing at 1800 °C under 15 MPa for 1 h. As it is clear in Fig. 1a, some porosity remains in the microstructure of Z samples showing that the sintering condition is not appropriate to manufacture the fully-dense monolithic ZrB$_2$. As seen in Fig. 1a, using small content of TiN (5 wt%) in ZrB$_2$ as a sintering additive has led to porosities elimination, secondary in-situ phase formation, and relative density improvement. But some pores and agglomerated areas are still present in the microstructure of the ZT specimen. This agglomerated area seems to prevent more densification owing to entrapping the porosities. In addition to the silver main phase distributed through the microstructure (ZrB$_3$), several newly formed phases with various colors including dim gray, black, and light gray phases can be seen. Such observations indicate the chemical reactions between the initial powders that occurred during the hot-pressing process.
Higher magnification of the polished surface of the as-sintered ZT sample containing agglomerated phase along with corresponding EDS elemental mapping is exhibited in Fig. 2. From Fig. 2, the concentration of zirconium and boron in their elemental map shows that the matrix is ZrB₂. On one hand, in the agglomerated area, the concentration of mentioned elements decreases. On the other hand, the presence of titanium in all regions shows the intention of this element to diffuse from the Ti-rich area to other grains. In this situation, the solid solution formation of (Zr, Ti)B₂ is possible. Such observation has been carried out in the ZrB₂-TiN manufactured by the spark plasma sintering method [43]. Some dim gray areas in the microstructure can be seen that may be ZrO₂ according to the concentration of oxygen and zirconium. Since ZrB₂ powder as a non-oxide material, naturally tends to observe and react with the oxygen, some oxides such as ZrO₂ can exist on the surface of its particles. Therefore, this phase can remain and be detected. Therefore, this phase can be left over from raw materials or formed as a result of chemical reactions among initial phases during the sintering procedure. It is clear from Fig. 1b and Fig. 2, some light gray phases are uniformly distributed in the microstructure, which can be guessed that such phases are related to ZrN due to their light color and the corresponding elemental map. It is worth saying; it is hard to detect some light elements such as nitrogen and boron in the corresponding EDS elemental maps. The concentration of nitrogen and boron in the black area shows the probability of BN formation as the in-situ synthesized phase. In addition to the black phases, there are other phases that seem to be ZrB₂ or (Zr, Ti)B₂ solid solution inside the orange circle. The synthesis of (Zr, Ti)B₂ solid solution is also reported in spark plasma sintered ZrB₂-SiC-TiN and ZrB₂-TiN ceramics [43, 44].
Fig. 3 displays the secondary electron mode FE-SEM image of the fractured surface of ZT ceramic and its related EDS point spectra. According to the corresponding EDS spectra, the continuous matrix phase shown by point B in Fig. 2c has a high concentration of zirconium and boron elements, which seems to be ZrB₂ as the main phase. In addition, it had been discussed above that there is a possibility of (Zr, Ti)B₂ formation. Therefore, according to the related EDS analysis of point B, it seems that this point is the (Zr, Ti)B₂ solid solution. Also, EDS analysis of point A (Fig. 3b) shows that high-aspect-ratio phases surrounded among the matrix grains may be in-situ synthesized h-BN with platelet structure. Since there is no trace of titanium and nitrogen, the TiN additive seems to be totally consumed during the consolidation.

Identification of the crystalline phase composition of as-sintered Z and ZT samples was performed using XRD analysis. Fig. 4 exhibits the result of the XRD pattern of the ZT sample. As it was expected, the only phase recognized in the XRD pattern of the Z sample (not shown here) was ZrB₂. As can be seen in the phase composition of the ZT sample shown in Fig. 4, not only ZrB₂ is present as the main phase in the microstructure of TiN-doped material, but also some new phases including h-BN and ZrN are recognized as the in-situ formed phases.

These new phases were synthesized during the spark plasma sintering process as a result of the introduction of 5 wt% TiN into the ZrB₂ matrix.

None of the phase analysis and microstructure observations could identify traces of TiN, which indicates that this sintering aid was probably completely consumed during the SPS processing. The following chemical reaction between ZrB₂ and TiN seems to be the reason for the disappearance of the TiN phase.

$$\text{ZrB}_2 + \text{TiN} = \text{TiB}_2 + \text{ZrN}$$

ZrN as a by-product of the aforesaid equation is the synthesized phase that is detected in the XRD pattern shown in Fig. 4. TiB₂ as another by-product of Eq. 2 is an essential compound to form the (Zr,Ti)B₂ solid solution. Zirconium nitride and mentioned solid solution form at the same time. In other words, nitrogen atoms must penetrate into the ZrB₂ structure and replace boron atoms to form ZrN. It will be possible when zirconium atoms of ZrB₂ can be replaced by titanium atoms and form the solid solution of (Zr,Ti)B₂. The lower melting point of the aforesaid solid solution compared to ZrB₂ reduces the temperature required for sintering and thus improves sinterability [45, 46]. Boria (B₂O₃) as a surface contamination on the particles of ZrB₂...
can be reduced through a chemical reaction (Eq. 3) with in-situ synthesized ZrN obtained from the Eq. 2. ZrB₂ that is in-situ synthesized during the heating process develop microstructure and encourages the sinterability of the material owing to its ultra-fine size. The tendency of fine particles to bind to larger particles is lowering the energy level and increase stability. In order to reduce the energy level and increase the own stability, fine particles tend to connect to larger ones. According to Fig. 2, there are areas where the concentration of oxygen and zirconium is high, which indicates the presence of oxide impurities in the ZT sample. Based on the above statements and the formation of ZrO₂ as a by-product in Eq. 3, it seems that this oxide is present in the microstructure, but it has not been to the extent that it can be identified by XRD.

\[
10ZrN + 6B₂O₃ = 9ZrO₂ + ZrB₂ + 10BN \tag{3}
\]

Fig. 5, compares the ZrB₂ peak positions of the ZT sample with that of standard JCPDS card (No. 01-089-3930). On one hand, as it is clear from Fig. 5, there is a small peak shift towards a higher angle as 5 wt% TiN is added to ZrB₂. On the other hand, no phase including the titanium element is detected using analysis methods of XRD and EDS. These observations strengthen the theory of the solid solution formation of (Zr, Ti)B₂. Titanium with an atomic radius of 0.147 nm substitutes zirconium atoms with an atomic radius of 0.162 nm [47]. When smaller atoms substitute for larger ones, the structure of the host phase is subjected to compressive stress, which leads to a decrease in its lattice parameters. Based on Bragg's law, it is obvious that a shift in peaks towards a higher angle occurs with decreasing interfacial spacing due to the reduction of lattice parameters.

Fig. 6 illustrated the measured Vickers hardness for as-sintered ceramic materials. As seen in Fig. 6, the addition of a small amount of nitride component (5 wt% TiN) can promote the hardness by about 80%. Hardness is defined as a material’s quality to resist localized plastic deformation (surface indentation). Since porosities do not show any resistance to applied forces, then materials with higher porosity show less hardness. Using the TiN additive not only encourages sinterability and densification of ZrB₂ material but also can improve the hardness. The increase in Vickers hardness is not only due to the densification improvement, another reason is the formation of new secondary phases that are inherently harder than initial materials. On the other hand, as is seen in Fig. 7, restricting the exceeding growth of grains through the synthesis of in-situ phases has also helped to improve hardness. It is clear from FE-SEM images from fractured sections of as-sintered samples shown in Fig. 7, adding 5 wt% TiN not only leads to the limitation of extreme growth of ZrB₂ grains but also results in the elimination of pores and porosities. It should be noted that according to the initial particle size of ZrB₂ (≤ 1.5 µm), hot pressing of pure ZrB₂ at 1800 °C under an external load of 15 MPa for 1 hr caused the grains of ZrB₂ to grow excessively so that its grain size was measured to be around 15 µm (see Fig. 7a). It can be observed in Fig. 7, incorporation of only 5 wt% TiN into ZrB₂ has been able to minimize grain growth; hence, the mean size of ZrB₂ grains in this sample has decreased to 7 µm.

The measured values of fractured toughness are shown in Fig. 8. Improvement of fractured toughness can be seen from Fig. 8. It
is clear that the addition of TiN additive has had a positive effect on these properties, so this feature has been promoted by about 2.5 times using 5 wt% TiN and fracture toughness of 3.8 MPa.m\(^{1/2}\) was achieved. The fracture toughness of materials can be influenced by various factors. Relative density is one of the common factors affecting this property. Since adding TiN has led to densification promotion, it seems logical to increase toughness. Therefore, improving the densification during the sintering process of ceramics is very important, because it can affect the mechanical properties of these materials like hardness, fracture toughness, and strength. The fracture toughness of ZrB\(_2\)-based materials not only can be improved by densification but also can be influenced by their phase composition and microstructure.

The path of crack propagation caused by the Vickers indenter test performed on the polished surface of the as-sintered specimens is demonstrated in Fig. 9. As is observed in Fig. 9a, toughening mechanisms like bridging or toughening have not occurred in the Z sample during the crack spreading. It means that this sample shows low indentation fracture toughness. While, a small amount of TiN is added to ZrB\(_2\) different types of toughening mechanisms such as grain breaking, crack deflection, bridging, and crack branching can be found in the microstructure of the ZT specimen. In-situ forming new phases like ZrN and h-BN assist to absorb the energy of cracks. It can be understood from Fig. 9b, on one hand, large ZrN grains are fractured as cracks reach them and as a result, it reduces their energy. On the other hand, h-BN with its soft structure and high aspect ratio can have an important role in observing the crack energy.

![Fig. 7. FE-SEM images of fracture surfaces of as-sintered a) Z and b) ZT samples.](image)

![Fig. 8. Measured indentation fractures toughness of Z and ZT samples.](image)
Conclusions

4. Influence of adding TiN as the sintering additive in ZrB2 ceramic material was investigated. Therefore, the pure ZrB2 and ZrB2-5 wt% TiN were hot pressed for a dwell time of 60 min at a temperature of 1800 °C under a mechanical pressure of 15 MPa. The densification and sinterability of ZrB2 ceramic importantly evolved when only small content of TiN (5 wt%) was introduced to this material. XRD and FE-SEM studies evidenced that new secondary phases like ZrN, (Zr, Ti)B2 solid solution, h-BN, and ZrO2 form through removing oxide impurities on the ZrB2 particles’ surface via chemical reactions. The grain size of ZrB2 is minimized by the incorporation of TiN; thus, its mechanical features are improved so that the values of 14.1 GPa and 3.8 MPa.m\(^{1/2}\) were attained for Vickers hardness and fracture toughness, respectively.

References

